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INTRODUCTION 

 

Matrices  in general, and tridiagonal matrices inparticular, play an 

important role in several areas of Applied Sciences. We encounter tridiagonal 

matrices very often in Multivariate analysis , Image analysis, Financial market 

studies, Circular data analysis, Biomathematics, to mention a few. In “Parallel 

Computing “ there is a mention about cholesky decomposition of tridiagonal 

symmetric matries  [ Ilan Bar On  in 1995] . There is also a mention about 

tridiagonal matrices in Mixture analysis in Fisheries and Distributed large – scale 

visualization in Networking problems. It is well known that there exists an analytic 

expression for the eigenvalues of a tridiagonal matrix of the type 

              a    b 

              c    a   b 

                    c   a   b 

                         ..    ..   .. 

                               ..   ..   .. 

                                    c   a   b 

                                         c   a    

 

 

 

            In early 1990’s it was  a hot problem to extend the result to a block – 

tridiagonal matrix required in certain algorithms of computer networks.The wide 

range of applications and various algorithms for matrix operations on tridiagonal 

matrices , we are motivated to make a detailed study of this topic and present our 

observations and our own results along with algorithms on tridiagonal matrices 

and relatives in the form of this dissertation. We observe the properties of the set  

of tridiagonal matrices and the set of the lower tridiagonal matrices and adopt 
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some techniques developed by Rami Reddy, B., [ 7 ] and apply to the tridiagonal 

matrices for finding inverse of nonsingular tridiagonal matrices and lower 

tridiagonal matrices by recursion method. These form Section 1 of this 

dissertation. 

 

                LU decomposition for matrix inversion is a basic problem in numerical 

analysis where the complexity studies have yielded fruitful results. LU 

decomposition is also suited to compute eigenvalues and eigenvectors of 

matrices. The concept of LU decomposition is taken from [ 2 ] and arrive at new 

algorithm for finding LU decomposition of tridiagonal matrix and symmetric , 

positive definite and tridiagonal matrix by single bordering in Section  2. 

 

                In the progress of work , we come across the special type of 

symmetric, positive definite and tridiagonal matrices in which  ( 2k, 2k-1 ) entries 

are zero  k.These matrices possess some special features and are discussed in 

Section – 3. We present a few results and algorithms of our own obtained in this 

process. These results will avoid many a hurdle in the adoption of tridiagonal 

matrices in various streams . Number of computations will also be reduced in 

finding inverse of a matrix by cholesky decomposition.  

 

                 In the process of survey for tridiagonal matrices we find a beautiful 

and very handy method [ 1 ] . In this method an unsymmetrical tridiagonal matrix 

shall be transformed to symmetrical form which simplifies the computation of 

eigenvalues of tridiagonal matrices. Breaking down method [ 1 ] for symmetric 

tridiagonal matrices turns our work easy to find eigenvalues of tridiagonal matrix. 

 Application of the above method to the special type of symmetric, positive 

definite and tridiagonal matrices in which ( 2k, 2k-1 ) entries are zero  k, is 

discussed in Section – 4. 

                 The concept of QR  factorization of a matrix is taken from [ 4 ]. In 

Section – 5 , we present some observations on QR factorization of tridiagonal 
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matrices and special type of tridiagonal matrices in which  ( 2k, 2k-1 ) entries are 

zero  k. 
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CHAPTER – I 
 

All the matrices under consideration are square matrices over the field of 

real numbers. We call the first diagonal below the principal diagonal of a square 

matrix A,  the subdiagonal of A and the diagonal above the principal diagonal as 

superdiagonal. 

 
 A tridiagonal (also called Jacobi) matrix is a matrix which has zeros except 

on the principal diagonal, the superdiagonal and the subdiagonal. Thus               

A = ( )ija  is  tridiagonal  when  ija  = 0  for  |i-j| > 1. 

 
 A matrix which has zeros except on the principal diagonal and the 

subdiagonal is known as lower tridiagonal matrix (l t d). 

 
 A matrix which has zeros except on the principal diagonal and the 

superdiagonal is known as upper tridiagonal matrix (u t d). 

 

 A matrix  of  the  form P = I –2 W Wt  where W is a column vector, WRn, 

Wt=(w1…..wn) such that WtW = w 2

1 + w 2

2 + w 2

3 +……w 2

n =1 is known as 

Householder matrix.  Clearly P is symmetric and orthogonal. 

 
 An upper triangular matrix which has zeros except on the subdiagonal is 

known as upper Hessenberg matrix. 

 

 A = ( )ija is upper Hessenberg matrix when ija = 0  for  I > j+1. 

 
1.1. Proposition : The set TD of all tridiagonal matrices of order n is a vector 

space of dimension 3n-2. 

 

Proof: Since 0TD, TD  . Let A,B TD. 
 

 If A = ( )ija  and B = ( )ijb  then A+B = ( )ijij ba +  

 Since 
jia = 0 and 

jib = 0  if  | i-j | > 1, 

 ija + ijb = 0  if  | i-j | > 1 

 A + B  T D. 
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Hence TD is closed under addition. 
 

Let k  R. Then kA = k( )ija = (k )ija  

Since ija = 0  if  | i-j | > 1,   ka ij = 0  if   | i-j | > 1 

 
TD is closed under scalar multiplication. Hence TD is a subspace of the vector 

space of all matrices of order n and hence TD is a vector space by itself. Write 

E ij for the matrix of order n, with 1 in the (i, j )th place and zero elsewhere. 

 

 Let B = { E ij    | i-j | >1, 1   i, j  n } 

 

B  TD  If ,0
,

 =
ji

ijij Ex  then 0 = ijx  =  =
ji

ijijij xEx
,

0   

Hence B is linearly independent. 

 

 Let A  TD, A = ( )ija  where 0=ija ,  if  | i – j | > 1.  

Then A = 
=

n

ji

ijA
1,

where ijA has ija  in (i , j)th place and 0 elsewhere 

 

= 
=

n

ji

ijij Ea
1,

 and  0=ija   if  | i – j | > 1.  

 B spans TD. 
 
Since B is a linearly independent subset of TD and spans TD, B is a basis 

for TD. 
 
Since B has (3n-2) elements, dimension TD = 3n-2. 
 

1.2. Proposition: The set LTD of all lower tridiagonal matrices of order n is a 

subspace of TD and has dimension 2n-1. 

 

Proof: clearly  0  LTD   TD 
 

If A, B  L T D, 

A = ( )ija  and B = ( )ijb  

Where 0== ijij ba   if  j – i >1 

 

If  x, y  R then  xA + yB = (x ija +y )ijb = 0 ,if  x ija + y ijb = 0 ,  for j – i >1 
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Since 0== ijij ba  if j – i >1 

hence xA + yB  L T D 
 
Since L T D is a nonempty set and is closed under addition and scalar 

multiplication,   L T D is a subspace of T D. 

 

Let B1 = { E ij  /  j – i >1, 1   i, j  n } 

Then B1  T D and  B1 is linearly independent 

Let A  LTD, A = (a ij ) where a ij = 0  if  j - i >1 

Then A = 
=

n

ji

ijij Ea
1,

 when  j – i >1 

B1 spans LTD 
 
Since B1 is a linearly independent subset of LTD and spans LTD, B1 is a basis for 

LTD and dimension LTD = 2n-1. 

 
Remark 1.3: TD and LTD are not closed under multiplication. 
 
Illustration (i) 
 

A= 























−

−

−

13000

65700

01420

00531

00042

  B = 























−−

−

25000

14900

08620

00174

00029

 

 

AB = 























−

−

−

−−

572700

71063140

13617228

00433333

004322

 

 

AB  TD. 
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Illustration (ii): 
If 
 
          2    0   0    0   0                          9    0    0    0    0 
           
         -1   3    0    0   0                          4    7    0    0    0 
 
C =    0   2    4    0   0               D =      0    2    6    0    0 
 
          0   0    7    5   0                           0    0  -9    4    0 
 
          0   0    0   -3   1                           0    0    0   5    2 
 
then 
 

CD = 























−

−

272700

0203140

0024228

000213

000018

 

 

CD  LTD  even though  C  LTD and D  LTD 
 
1.4. Result: The product of two tridiagonal matrices is pentadiagonal, i.e it has 

zeros when | i – j | > 2.  

 

Proof : Let A = (a ij ) and  B = ( )ijb  where 0== ijij ba   if  | i – j | >1 

 

Then AB = (c ij ) where  

c ij = 
=

n

k

kjik j
ba

1

1   i, j  n 

 

    = njinjiiiijiijiijiiijiji bababababababa ++++++++ ++−−−− ................... ,11,,111,,22,2211  

case (i)      j > i + 2 
 

We have === −2,21 ................... iiii aaa 0 

 

njinjiiiijiijiiiij babababac ++++= ++−− .......,11,,11,  

 

j – i-1 > 1    b i+1,j =  0 
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j – i > 2    b ij =  0 

 

j – i +1 > 2+1    b i – 1,j  =  0 

 
Therefore  cij  =  0   if  j > i+2 
 
Similarly if i > j + 2,  cij = 0 
 
Therefore if | j – i | > 2,  then   cij = 0 
 
 
1.5. Remark: The inverse of a nonsingular tridiagonal matrix is not necessarily 

tridiagonal. 

 
Illustration :  
 

A = 























56000

14700

03250

00143

00021

 =  








DE

CB
 

 
We use the partition method  [ 4 ]  for computation of A-1 
 

Let A-1 = 








VZ

YX
   where AA-1 = I 

 
V = (D - EB-1C)-1 
 
Y = - B-1CV 
 
Z = -VEB-1 
 
X = B-1( I  – C Z ) 
 



9 

 

A-1 = 





































−

−−−

−−−

−−−

−
−

14

1

14

9
1

2

5

2

5

28

3

28

15

6

5

12

25

4

25

14

1

14

5

3

1

6

5

2

5

28

1

28

5

6

1

36

33

4

11

14

1

14

5

3

1

18

33

2

9

 

 
 
 
 
1.6. Method of finding the inverse of a nonsingular l t d matrix: 
 
 If L is a nonsingular l t d matrix of order n , L being a lower traingular 

matrix, its inverse L-1 is a lower traingular matrix. 

 

Let L = ( )ijl  and L-1 = ( )ijx  

 

where ijl  = 0  if  | j - i| > 1  and 

 

          ijx  = 0  if  j > i 

 

Then LL-1 =



























− nnnn ll

ll

ll

l

.......000

...............

...............

0...00

0...00

0...000

1,

3332

2221

11



























nnnn xxx

xxx

xx

x

......

...............

...............

0...

0...0

0...00

21

333231

2221

11
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 = 



























1...000

...............

...............

0...100

0...010

0...001

 

 

 iil  iix  = 1,   i  and 

 

for  i > j, 0 = (00………… 1, −iil  iil  0 0…..0) ( )njijjjjj xxxx ................00 ,1+
t 

 

= ijiijiii xlxl +−− ,11,  

 

 ijx  = 
ii

jiii

l

xl ,11, −−−
 

 
 
 
New Recursive algorithm for finding the inverse of a nonsingular ltd matrix of 

order n : 
 

1.6.1 Algorithm: Given L = ( ijl ) where iil   0,  i and  ijl  = 0  for  j – i >1 

 

Compute  i = 1 to n, iix = 1−

iil  

 
For  i = 2 to n  and  j = 1 to i – 1 
 

Compute ijx = 
ii

jiii

l

xl ,11, −−−
 

 

L-1 = 



























nnnn xxxx

xxx

xx

x

...

...............

...............

0...

0...0

0...00

21

333231

2221

11
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Illustration: 
 

Let L =























71000

02600

00520

00043

00001

 

 

Let L-1 = ( ijx )   where ijx  = 0  for  j > i,  1   i, j  5  such that  LL-1 = I 

 

11x  = 1 

 

21x   = 
22

1121

l

xl−
 = -0.75 

 

22x  = l22
-1 = 0.25 

 

31x   = 
33

2132

l

xl−
 = 0.3 

 

32x  = 0.1,  33x  = 0.2 

 

41x  = -0.9,  42x  = 0.3,  43x = -0.6,  44x = 0.5 

 

51x  = 0.128571428, 52x  = -0.042857142 

 

53x  = 0.085714285, 54x  = -0.071428571 

 

55x  = 0.142857142 

 

L-1 = 























−−

−−

−

−

142857142.0071428571.0085714285.0042857142.0128571428.0

05.06.03.09.0

002.01.03.0

00025.075.0

00001
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1.7. Counting Arithmetic Operations: 
 
 We now arrive at the number of arithmetic operations for finding inverse of 

a lower tridiagonal matrix L of order n by the recursive method of theorem (1.6) 

 

 Let iS  be the number of operations required for computation of inverse of 

a lower tridiagonal matrix of order i when the inverse of the submatrix of order i-1 

is known. Then S = 
=

n

i

iS
1

 is the total number of operations required for the 

inverse of a given matrix L of order n. 

 

Let 1L = ( 11l ) and 
1

1

−
L = (

1

11

−
l ) 

 
For i = 2(1)n 
 

     ij = 0  if  j < i  
 
         =1   if  j = i  
 

ei
t =     ( i1, i2,……………. ii ) 

 

iL  = 













−−

−−

iiiii

ii

ltel

oeL

11,

11
 

 

Then iL -1 = 













−−

−−

iiiii

ii

xtex

oeX

11,

11
 

 

where 
1−

= iiii lx  
 

ijx = 

ii

jiii

l

xl ,11, −−−
 

 

ii XL =−1  
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In this computation we don’t consider the change of sign as an arithmetical 
operation. 
 

TABLE   1.7.1 
 

Computation of No. of arithmetic 
operations 

Total number of 
arithmetic operations 

iiX  for i =1(1)n n  
n2 

ijX , for i = 2(1) n  

          j = 1 to i - 1 


=

−=−
n

i

nni
2

2)1(2  

 
Total number of computations, S = n2  
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CHAPTER – 2 
 
L U  Decomposition for tridiagonal matrices: 
 

2.1 Theorem [3]: Let A = ( ija ) be a matrix whose leading submatrices are 

nonsingular. 
 
Then A has LU  decomposition. 
 
Proof: The proof is through mathematical induction.  
 

Clearly this holds for n = 1 for 
11a  = )( 11l  (

11u ) where if 
11u  is prescribed arbitrarily 

11l  may be determined by 11l  = 
11a /

11u . Assume the theorem to be true for (n-1). 

 

Let A = 






 −

nn

n

ac

bA 1
 be a square matrix of order n. 

 

 By induction hypothesis, 1−nA has LU-decomposition 1−nA  = 1−nL 1−nU , 

where 1−nL   is  a  lower  traingular  matrix while  1−nU  is a upper triangular matrix. 

Moreover, the assumption that 1−nA   is nonsingular  implies 1−nL , 1−nU  are 

nonsingular matrices. 

 

Set x  = c
1

1

−

−nU   y  = 
1

1

−

−nL b 

and let nnl , nnu  be any numbers such that 

 

b = 1−nL y , c= x 1−nU  

and xy+ nnl nnu  = nna  

 nnl nnu  = nna  – xy  

 

Write L = 






 −

nn

n

lx

L 01
and U = 







 −

nn

n

u

yU

0

1
 

 

Then LU = 






 −

nn

n

lx

L 01








 −

nn

n

u

yU

0

1
= A 
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By induction the result follows. 

 

Example 2.2.1. 















 −−

233

022

411

 = 
















−−

−

263

042

001

















−

−

−−

100

210

411

 

 

= 
















−

−

−

263

042

001

















−

−

100

210

411

 

 

2.2. Uniqueness of the LU – Decomposition: 

 

 That the LU – decomposition is in general not necessarily unique is clear 

from the following, 

Example 2.2.1. 















−

530

242

011

= 
















−

22/30

032

001















 −

200

3/220

011

 

 

 = 
















−

42/10

014

002















 −−

100

260

02/12/1

 

 

It is clear from the  proof of theorem (2.1), that one of the leading diagonal 

elements iil  or iiu  may be prescribed arbitrarily for the unique determination of 

the other. Generally, we impose the condition that iiu =1, ie the all diagonal 

elements of the upper triangular matrix are prescribed to be  unity. In such a 

situation the LU- decomposition will be unique. We now present our results on 

LU  decomposition for tridiagonal matrices. 
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2.3. Result : If A is tridiagonal matrix and has nonsingular leading principal 

minors, then the L, U in any LU decomposition for A are ltd and utd matrices 

respectively. 

 

Proof : since each leading principal minor is non-singular, the L and U in 

traingular decomposition for each minor are nonsingular. Hence the entries in the 

diagonals of L and U, are non-zero. In the general case we have many choices 

for iil  and iiu , from equations of the type iil  iiu  = ki . However when we impose 

the condition that iiu  = 1  i, and hence iL and iU  are uniquely fixed. Hence we 

assume that iiu  =1 i. 

Let A = 



























− nnnn aa

aaa

aaa

aa

......000

.....................

.....................

0...00

0...00

0...000

1,

343332

232221

1211

 

 

and L = 



























nnnnn llll

lll

ll

l

......

..................

..................

0...0

0...00

0...000

321

333231

2221

11

U = 



























1...000

...............

...............

...100

...10

...1

3

223

11312

n

n

n

u

uu

uuu

 

such that A = LU 
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

























− nnnn aa

aaa

aaa

aa

1,

343332

232221

1211

...000

..................

..................

0...0

0...0

0...00

 

=



























nnnnn llll

lll

ll

l

...

...............

...............

0...

0...0

0...00

321

333231

2221

11



























1...000

...............

...............

...100

...10

...1

3

223

11312

n

n

n

u

uu

uuu

 

 

= 





























++++

+++


−

=

1

1

323213121211

2221212322132122122221

1111311121111

...

...............

...............

...

...

n

i

nninninnnnnn

nn

n

lullulullull

ulululullull

ululull

 

 

11l = 11a , 11l  12u  = 12a   12u  = 12a / 11l , 11l 13u  = 0  13u  = 0 

 

Similarly 14u  = 15u  =…………..= nu1  = 0 

 

21l  = 21a , 122122222222122 ulalalul l −==+  

23u  = /23a 00, 242422142122 ==+ uulull  

 

Similarly 0...................... 22625 ==== nuuu  

Hence −=== ijijiiijij allaual ,/,1111 
−

=

2

1

i

k

kjikul   when  | i – j | = 1 
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iil  = iia -
−

=

1

1

i

k

kiikul   if  1   i  n,   2   j    n. 

 

If i – j  > 1, i = 3 to n, j = 1 to n, then (i, j)th element in the product LU is 

 

0............. ,33,2211 =++++ −− jjijjiiijiji ulululul  

Since 3,21 ............. −=== iiii lll = 0,    00)1( == ijij ll  

Similarly  if  j – i  > 1,  j = 3 to n,  i =1(1)n,  the  (i,j)th  element in the product LU is 

0............. ,33,2211 =++++ −− ijiijjjijiji ulululul  

Since 0............ ,321 ==== − jjjj uuu      00 == ijijii uul  

Hence L in the product L U is a  lower tridiagonal matrix 

i.e L = ( ijl ) if i – j > 1 

and U in the product LU is  an upper tridiagonal matrix 

ie U = ( iju )  if  j – i > 1 

 

 

2.4.  LU   Decomposition of a tridiagonal matrix by single bordering: 

 

 Let An be tridiagonal matrix of order n whose leading principal minors are 

nonsingular and ei be the column vector with i components having 1 in ith  

position and zero elsewhere. Let 1−nA be leading principal minor of order n –1 

having ltd, utd decomposition, 1−nA = 1−nL  1−nU  where the diagonal in 1−nU  consists 

of 1’s alone. 

 

Proof: For 1 i  n-1,   let ie = (0,0,……..1)t with  i  components 

let nnn ULA =  where 

nA  = 














−−

−−−

nn

t

nnn

nnnn

aea

eaA

11,

1,11

, nL = 














−−

−−

nn

t

nnn

nn

lel

eL

11,

11 0
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nU  = 














−

−−−

10 1

1,11

t

n

nnnn

e

euU
 















−−

−−−

nn

t

nnn

nnnn

aea

eaA

11,

1,11

= 














−−

−−

nn

t

nnn

nn

lel

eL

11,

11 0















−

−−−

10 1

1,11

t

n

nnnn

e

euU
 

                               = 














+−−−−−−

−−−−−−

nnnnnn

t

nnnnn

nnnnnnn

luleul

eluUL

,11,11,11,

11,1,111

 

 
1−nA = 1−nL  1−nU  

11,1,11,1 −−−−−− = nnnnnnnn eluea  

t

nnnnnn
t

nn eulea 11,11,11, −−−−−− =  

nnnnnnnn lula += −− ,11,  

 nnu ,1− = 
1,1

,1

−−

−

nn

nn

l

a
   

since iiu = 1  for  i = 1(1) n 

1,1, −− = nnnn al  

nnnnnnnn ulal ,11, −−−= ,  therefore nnn ULA =  

Hence A = LU 

 

2.5. Algorithm for finding LU decomposition for tridiagonal matrix A = )( ija  

of order n by single bordering: 

 

Write 1111111 ),( alaA ==  

)( 111 lL =  

For i = 2(1)n 

      j = 1(1) i 

1−ie = (i-1,1 i-1,2, …………….i-1, i-1)t  where  ij = 0,  if  j < i   

               = 1,  if  j = i 
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Write iA = 














−−

−−−

iii
t

ii

iiii

aea

eaA

11,

1,11

 

 

iiu ,1− = 
1,1

,1

−−

−

ii

ii

l

a
 

1,1, −− = iiii al  

iiiiiiii ulal ,11, −−−=  

 

iL =  














−−

−−

iii
t

ii

ii

lel

eL

11,

11 0
, iU  = 















−

−−−

iii
t

iiii

ue

eUU

1

1,11

0
 

 

A = nA  = nL  nU  

 A = LU 

 

2.5.1. Ilustration: 

 

A = 























−

−

−

−−

13000

41600

02310

00211

00032

 

 

Step 1: i = 1 

 

Let 1A  = (2) and 1L  = ( 11l ), 1U = (1) such that  

1L
1U  = 1A  

11l  = 11a  = 2, 11u  = 1 
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Step 2: i =2 

Let 
2A   = 









−11

31A
 

12u  = 
11

12

l

a
 = 1.5 

21l  = 21a  = 1 

22l  = 22a  – 21l 12u  = -2.5 

 

2L = 








− 5.20

12
 and  

2U = 








10

5.11
 

2L  
2U  = 

2A  

 

Step 3:  i = 3 

Let 3A  = 











 −

31

2

2

22

te

eA
 

 

23l  =  
22

23

l

a
 = 0.8 

32l  = 32a  = 1 

33l  = 33a  – 32l 23u  = 2.2 

3L  = 













2.21

0

2

22

te

eL
 and 3U  = 














10

8.0

2

22

te

eU
 

3L 3U  = 3A  

Step 4:  i = 4   34u  = 
33

34

l

a
 = -0.909090909 

43l  = 43a  = 6 

44l  = 44a - 43l  34u  = 6.454545455 
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4L  = 














454545455.66

0

3

33

te

eL
  and   

4U  = 












 −

10

909090909.0

3

33

te

eU
 

 

4L 4U  = 
4A  

 

Step 5:   i = 5  

45u  =  
44

45

l

a
 = -0.619718309 

54l  = 54a  = 3 

55l  = 55a  – 54l  45u  = 0.859154929 

 

5L  = 













859154929.03

0

4

44

te

eL
 and 5U  = 












 −

10

619718309.0

4

44

te

eU
 

 

5L 5U  = 5A  

 

Finally A = 5A  = 























−

5

4

3000

0600

002.210

0005.21

00002

l

l

   























10000

1000

0100

008.010

0005.11

4

3

u

u  

where 
4l  = 6.454545455, 5l  = 0.859154929 

 3u  = 0.909090909, 4u  = -0.619718309 
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Illustration 2.5.2. 

 

A =     























−

−

−

−

13000

40600

02310

00201

00032

 

 

As above we get 

L = 























5554

4443

3332

2221

11

000

000

000

000

0000

ll

ll

ll

ll

l

 and U = 























10000

1000

0100

0010

0001

45

34

23

12

u

u

u

u

 

 

 

 

 

where 11l  = 2  12u  = 1.5 

21l  =1, 22l  = -1.5 

32l  =1, 33l  = 1.666666667, 23u  = 1.333333333 

43l  = 6, 44l = 7.2      34u  = -1.2 

54l  = 3, 55l  = 0.666666666    45u  = =0.555555555 

LU = A 

 

2.6. This algorithm is valid only when all the principal minors are nonsingular. 

Even otherwise one may get such a L and U so that A = LU,  even though the 

algorithm fails. 
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Illustration: 

 

A= 























−

−−

183000

65800

051900

001296

00064

 

 

Step1:   i =1 

Let 1A = (4) , 11l  = 
11a  =4, 

11u  = 1 

1L  = ( 11l ),
1U  = (1) 

 

Step 2:   i =2 

2A  = 








96

64
 

21l  = 21a  = 6 

12u  = 
2

3

4

6

11

12 ==
l

a
 

22l  = 22a  – 21l  12u  

        = 9-6 (3/2) = 0 

22u  = 1 

2L  = 








2221

1 0

ll

L
   2U  = 









22

121

0 u

uU
 

 

Step 3:  i = 3 

 

3A  = 














19

12

2

22

t
oe

eA
 

32l  = 32a  = 0 

22l  23u  = 23a  =12 
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This is not possible 

However we have A = LU 

 

Where L = 























51000

03400

00530

00043

00002

, U = 























−−

40000

23000

01200

00300

00032

 

 

2.7. Counting Arithmetic operations: 

 

  We    now    find    the     number   of     arithmetic     operations  for  

finding LU decomposition for a tridiagonal matrix A of order n by the recursive 

method of theorem (2.4). 

 

 Let  iS   be  the  number  of  operations  required   for   computation   of  

LU decomposition for a matrix of order i when LU decomposition of the submatrix 

of order i –1 is known. Then S = 
=

n

i

iS
1

 is the total number of operations required 

for the LU decomposition of a given matrix A of order n. 

 

Let 1A  = (
11a ) = 1L

1U  where 1L = (
11a ),

1U  = (1)  

for i = 2(1) n 

iA  = iL
iU  where iL  = 















−−

−−

ii

t

iii

ii

lel

eL

11,

11 0
 and iU  = 















−

−−−

10 1

11,1

i
t

iiii

e

eUU
 

iiu ,1− = 
1,1

,1

−−

−

ii

ii

l

a
 

1,1, −− = iiii al  

 

 

iiiiiiii ulal ,11, −−−=



26 

 

In this computation we don’t consider the change of sign as an arithmetical 

operation. 

 

 TABLE 2.7.1 

 

Computation of No. of Arithmetic 

Operations 

Total number of 

arithmetic operations 

iL  2 
 

3 

 iU  1 

 

Total number of operations = 3+ 3 + ……………(n-1) times = 3(n-1) 

 

Note : If we assume that iiu = 1 i, then the representation is unique and the 

number of arithmetic operations is 3(n-1). 

 

Comparison: 

 The arithmetic operations required for computation of L and U in A = LU 

are counted  in [ 7 ] and are  found to be (1/6 )n(n-1)(4n+1), where n is the order 

of A . 

 In the case of a tridiagonal matrix where our algorithm (2.5) is applied, this 

number reduces to 3(n-1). 

 

2.8. LU  Decomposition of a symmetric, positive  definite and tridiagonal 

matrix A by single bordering: 

 Let A = nA be symmetric, positive definite and tridiagonal matrix of order n 

and ie  be column vector of order i having 1 in ith  position and 0 elsewhere. Let 

1−nA be the leading principal minor of nA  of order n-1. Assume that 

111 −−− = n
t

nn LLA where 1−nL  is ltd (2.3) then A = LLt 
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where L = 














−−

−−

nn

t

nnn

nn

lel

eL

11,

11 0
 

 

1, −nnl  = 
1,1

1,

−−

−

nn

nn

l

a
 

 
2/1

1,
2 )( −−= nnnnnn lal  

Proof: LLt = 














−−

−−

nn

t

nnn

nn

lel

eL

11,

11 0















−

−−−

nnn
t

nnnn
t

le

elL

1

11,1

0
 

 

= 














−−−−−−

−−−−−

111,
2

111,

111,11

nn
t

nn
t

n

t

nnn

nnnn

t

nn

eelLel

eLlLL
 

= 














−−

−−−

nn

t

nnn

nnnn

aea

eaA

11,

1,11

= A 

 

t

nnn LLA 111 −−− =  

11,11,1,1 −−−−−− = nnnnnnnn ellea  

t

nnnnn

t

nnn ellea 11.11,11, −−−−−− =  

22

1, nnnnnn lla += −  

Since A is symmetric ija = jia  for 1 i, j  n 

 

1,,1 −− = nnnn aa   

1, −nnl = 
1,1

1,

−−

−

nn

nn

l

a
 

nnl  = ( 2/12

1, )−− nnnn la  

Hence LLT = 














−−

−−−

nn

t

nnn

nnnn

aea

eaA

11,

1,11
 = A 
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2.9. Algorithm for finding the LU  Decomposition of a symmetric, positive 

definite and tridiagonal matrix A = ( ija ) of order n: 

 

Assume A = ( ija ) is symmetric, positive definite and tridiagonal marix of order n. 

Write  1A = (
11a ) , 11l  = 

2/1

11a  

1L = ( 11l ) 

for i =2(1)n, j = 1(1)i 

 

t

ie = (i1, i2,………..ii), ij = 0 if j < i  

    = 1 if j = i 

 

write iA  = 














−−

−−−

ii

t

iii

iiii

aea

eaA

11,

1,11
 

1, −iil  = 
1,1

1,

−−

−

ii

ii

l

a
 

2/12

1, )( −−= iiiiii lal  

 

iL  = 














−−

−−

ii

t

iii

ii

lel

eL

11,

11 0
 

A = t

iii LLA =  

 A = LLt 

 

2.9.1. Illustration: 

 

A = 























43000

310600

06910

00174

000415
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A is symmetric, positive definite and tridiagonal matrix of order 5. 

 

Step 1:   i = 1 

 

Let 1A = (15), 11l = (15)1/2 = 3.872983346 

 1L = (3.872983346) 

Step2 :   i = 2 

 

2A  = 








74

41A
 

21l   = 032795559.1
11

21 =
l

a
  

435843454.2)( 2/12

212222 =−= lal  


2L  = 









435843454.2032795559.1

41L
 

 

Step 3:   i = 3 

3A = 













91

1

2

22

te

eA
 

32L  = 
22

32

l

a
 = 0.410535413 

2/12

323333 )( lal −= = 2.971777359 

3L  = 













971777359.2410535413.0

0

2

22

te

eL
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Step 4:   i =4 

 

4A  = 














106

6

3

33

te

eA
 

43l  = 
33

43

l

a
 = 2.018993779 

2/12

434444 )( lal −= = 2.433857868 

4L  = 














433857868.2018993779.2

0

3

33

te

eL
 

 

Step 5:   i = 5 

5A  = 













43

3

4

44

te

eA
 

54l  = 
44

54

l

a
 = 1.232611008 

2/12

545555 )( lal −= = 1.575014218 

5L  = 













575014318.1232611008.1 4

44

te

OeL
 

 

A= tLLA 555 =  

where 5L  = 























5554

4443

3332

2221

11

000

000

000

000

0000

ll

ll

ll

ll

l

 

11l  = 3.872983346 

21l  = 1.032795559 

22l  = 2.435843454 

32l  = 0.410535413 
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33l  = 2.971777359 

43l  = 2.018993779 

44l  = 2.433857868 

54l  = 1.232611008 

55l  = 1.575014318 

 

2.10. Counting Arithmetic Operations: 

 

 We now find the number of arithmetic operations for finding LLt 

decomposition of a symmetric, positive definite and tridiagonal matrix A of order 

n by the recursive method of theorem (2.8). 

 Let iS be the number of operations required for computation of LLt 

decomposition of a matrix of order i when LLt decomposition of the submatrix of 

order i-1 is known. Then S = 
=

n

i

iS
1

 is the total number of operations required for 

the LLt decomposition of a given matrix A of order n. 

 

 

 

 

Let 1A = ( 11a ) = tLL 11 where )(
2/1

111 aL =  

for i =2(1)n 

iA = t

ii LL  where iL  = 














−−

−−

ii

t

iii

ii

lel

eL

11,

11 0
 

and 1, −iil = 
1,1

1,

−−

−

ii

ii

l

a
 

iil  = 2/12

1, )( −− iiii la  
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 In this computation we don’t consider the change of sign as an 

arithmetical operation. 

 

TABLE 2.10.1 

 

Computation of No. of arithmetic 

operations 

Total number of 

arithmetic operations 

1, −iil  1  

4 
iil  3 

  Si  = 4 

 

1S  = total number of arithmetic operations of 1L  = 1 

S = 1S + 
=

n

i

iS
2

 

= 1+4+4+………………(n-1) times 

= 1+4(n-1) = 4n-3 
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CHAPTER – 3 
 

In this section we consider the special type of ltd matrices in which  l2k,2k-1=0 k. 
 

Illustration : A = 























−

−

53000

02000

00710

00030

00004

 

 
3.1. Result: The set SLTD of all (nxn) ltd matrices in which (2k,2k-1) entries are 

zero  k is a vector space of dimension p, where 

 p = 
2

13 −n
,  if n is odd  and 

2

23 −n
, if n is even. 

 
This vector space is a ring with identity with respect to matrix multiplication. 
 
Proof: 
 

Step 1: clearly O SLTD. So SLTD   
 

Let A,B  SLTD,   R 
 

where A = ( )
ija , B = ( )

ijb  in which 012,212,2 == −− kkkk ba   k and j – i > 1 

 

 A+B = ( )
ija + ( )

ijb = ( )
ijij ba +  

 

Since 0=ija  and 0=ijb   if  j – i  >  1  and  012,212,2 == −− kkkk ba   k 

 

0=+ ijij ba  if  j – i > 1 and 012,212,2 == −− kkkk ba   k 

 

Hence A+B  SLTD 
 

Let   R 

 A =  ( )
ija  = ( )ija  

Since 0=ija  if j – i > 1 and ia kk =− 012,2  

 0=ija  if j – i > 1 and ia kk =− 012,2  
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Hence A  SLTD 

Therefore SLTD is a nonempty set and is closed under addition and scalar 

multiplication. 

Hence SLTD is a vector space. 
 

Write ijE for the nxn matrix with 1 in the (i,j)th place and zero elsewhere. 

 

Let B2 = { njiijEij − ,1,1/  and (2k,2k-1) entries are zero k} 

 

then B2  TD  and  B2 is linearly independent. 
 

Let A  SLTD, A= ( )
ija  where 0=ija , if j – i > 1 and ka kk =− 012,2  

then A = 
=

n

ji

ijij Ea
1,

 when j – i > 1 and ka kk =− 012,2  

B2 spans SLTD. 
 
Since B2 is a linearly independent subset of SLTD and spans SLTD, B2 is a basis 

for SLTD and  dimension of SLTD = p 
 

Step 2: SLTD is closed under matrix multiplication which is not necessarily 

commutative. 
 

AB = ( ijp ) where ijp =
=

n

s

sjisba
1

 

kkkkkkkkkk babap 2,1212,122,22,122,.12 +++++ +=  

012,2 =−kkp  

iiiiii bap =   where  i = 1(1)n 

AB SLTD 
 
Remark: If k>1, SLTD is not necessarily commutative with respect to 

multiplication. 

 

Example : A = 





















4000

0310

0020

0001

 B = 





















2000

0130

0010

0004
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(3,2) element in AB = 10 
 
(3,2) element in BA = 7 
 
3.2. Result: The inverse of a nonsingular matrix of SLTD is also a matrix of 

SLTD.  

 

Let L  SLTD when L = ( )
ijl  in which kl kk =− 012,2  

 
Clearly the inverse L is lower triangular. 
 

Let L-1 = 



























nnnnn xxxx

xxx

xx

x

...

...............

...............

0...

0...0

0...00

321

333231

2221

11

 

 
(2k,2k-1) element in the product LL-1 = I is 
 

0...., 12,1212,212,22,212,11,2 =+++ −−−−− kkkkkkkk xlxlxl  

 

Since 0.... 12,2212,1 === −−− kkk xx and 012,12 −− kkx , it follows that 012,2 =−kkl  

 

 If L= nL  is a nonsingular ltd matrix of order n, the leading principal minors 

are also of the same type. This suggests a recursion formula for L-1= 1−

nL  in terms 

of the inverse of 1

1

−

−nL where 1−nL is the n-1 x n-1 matrix obtained by removing the 

nth row and nth column of nL . 

 

3.2. Method  of  finding  the inverse of a ltd matrix of order n in which 

(2k,2k-1) entries are zero by single bordering: 

 

Theorem: Let L be a ltd matrix of order n in which (2k,2k-1) entries are zero. If L 

is nonsingular then L-1 is a ltd matrix of order n in which (2k,2k-1) entries are 

zero. 
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Proof: Let )1,0,.......0,0(, 11

1

1 == −−

−

−

t

nnn eXL  with n -1 components. 

 

Let nL = 














−−

−−

nn

t

nnn

nn

lel

eL

11,

11 0
 and 1−

nL =














−−

−−

nn

t

nnn

nn

xex

eX

11,

11 0
 

=nn XL I 















−−

−−

nn

t

nnn

nn

lel

eL

11,

11 0















−−

−−

nn

t

nnn

nn

xex

eX

11,

11 0
= 














−

−−

10

0

1

11

n
t

nn

e

eI
 

 

=−− 11 nn XL = I 

nnnn xl = 1 

011,111, =+ −−−−−

t

nnnnnn

t

nnn exlXel  

 1−= nnnn lx  

01,1,11, =+ −−−− nnnnnnnn xlxl  

nnnn

nn

nn
ll

l
x

1,1

1,

1,

−−

−

−

−
=  

 

It follows that if the (2k,2k-1) term of L is zero, then the same is true for 1

1

−

−nL . 

Moreover the (k,k-1) term of 1

1

−

−nL  is 
kkkk

kk

ll

l

1,1

1,

−−

−−
 

3.3. Algorithm for finding the  inverse of a ltd matrix L of order n in which 

kl kk =− 012,2 : 

Given L = )( ijl is ltd matrix of order n where kl kk =− 012,2  

Write 1L =( 1

111111), −= lxl  

1

1

−L = )( 11x  

For i = 2(1)n, j = 1(1)i 
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t

ie = )................( ,2,1 iiii    where ,0=ij if j < i 

        =1, if j=i   

Write Li = 














−−

−−

ii

t

iii

ii

lel

oeL

11,

11
 

1−= iiii lx  

ii

iiii

ii
l

xl
x

1,11,

1,

−−−

−

−
=  

 














=

−−

−

−

−−

ii

t

iii

ii

i
xex

oeL
L

11,

1

1

11  

=−1

ii LL I 

LL-1=I 

 

3.3.1. Illustration: 

 

1. L = 























−

37000

05000

00640

00010

00002

 

 

Step (i)   i =1 

1L =(2) = 1

1

−L  = (0.5) 

 

Step (ii)  i=2 

 

Write 2L  = 







=









10

020

2221

1

ll

L
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11

2222 == −lx  

0
2211

21
21 =

−
=

ll

l
x  

Therefore 












=

−

−

10

01

11

2

L
L  

 

Step (iii) i =3 

3L  = 













− 64

0

2

22

te

eL
 where )1,0(2 =

te  

 

166666666.01

3333 == −lx  

666666666.0
3322

32
32 =

−
=

ll

l
x  

Therefore 













=

−

−

166666666.0666666666.0 2

2

1

21

3 te

oeL
L  

 

Step (iv)  i =4 

4L  = 














50

0

3

33

te

eL
 where te )1,0,0(3 =  

Write 2.01

4444 == −lx  

0
4433

43
43 =

−
=

ll

l
x  

Therefore 













=

−

−

2.00 3

3

1

31

4 te

oeL
L  

 

Step (v) i =5 

5L  = 













37

0

4

44

te

eL
 where te )1000(4 =  

Write 333333333.01

5555 == −lx  
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466666666.0
4455

54
54 −=

−
=

ll

l
x  

Therefore 













=

−

−

333333333.0466666666.0 4

4

1

41

5 te

oeL
L  

Hence L-1= 1

5

−L  = 























333333333.0466666666.0000

02.0000

00616666666.0666666666.00

00010

00005.0

 

 

3.4. Counting Arithmetic Operations: 

 We now find the number of arithmetic operations for finding inverse of a 

lower tridiagonal matrix L of order n in which 012,2 =−kkl  by the recursive method 

of theorem (3.2). 
 

 Let iS be the number of operations required for computation of inverse of a 

lower tridiagonal matrix of order i when inverse of the submatrix of order i –1 is 

known. Then S=
=

n

i

iS
1

is the total number of operations required for the inverse of 

a given matrix L of order n. 

 

Let 1L  = ( )() 1

11

1

111

−− = lLandl  

for i =2(1)n 

ij = 0 if j < i  

    =1  if j = i 

).........,.........,( 21` iiii

t

ie =  

iL  = 














−−

−−

ii

t

iii

ii

lel

oeL

11,

11
 

then 1−

iL = 














−−

−−

ii

t

iii

ii

xex

oeX

11,

11
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where 1−= iiii lx  

iiii

ii

ii
ll

l
x

1,1

1,

1,

−−

−

−

−
=  

ii XL =−1  

 

 In this computation we don’t consider the change of sign as an 

arithmetical operation. 

 Since 012,2 =−kkl  and 012,2 =−kkx  total number of computations must be 

counted separately for both odd and even cases. 

TABLE 3.4.1 

Matrix Computation of No. of arithmetic 

operations 

Total number of 

arithmetic operations 

iLi ,1− is odd 

ii

ii

x

x 1, −
 

2 

1 

3 

1−

iL  iix  1 1 

 

Case (i) n is odd 

Total number of operations, S= nSSS +++ ........................21  

    = 1+( 142 ........ −++ nSSS )+( nSSS ............53 ++ ) 

    = 1+1 






 −
+







 −

2

1
3

2

1 nn
=2n-1 

 

Case (ii) n is even 

Total number of operations 

 

S= 1S  + ( nSSS ........42 ++ )+( 153 ............ −++ nSSS ) 

= 1+1 






 −
+









2

2
3

2

nn
=2n-2 

 

Comparison with a lower triangular matrix of order n in section 1. 
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 The arithmetic operations required for computation of inverse of lower 

tridiagonal matrix of order n are counted and found to be n2 

 

 In case of a lower tridiagonal matrix in which (2k,2k-1) entries are zero 

where our algorithm (3.3) is applied, this number reduces to  

2n-1, when n is odd,  

2n-2, when n is even. 

 

3.5. Result : If A is symmetric, positive definite  and tridiagonal matrix of the type 

A = )( ija where 012,2 =−kka  then A = LLt where L is ltd and 012,2 =−kkl . For such a 

L, L-1 is also of the same type. 

 

Proof : Let A = 

































nna

aa

aa

aa

aa

a

...00000

.....................

.....................

0...000

0...000

0...000

0...000

0...0000

5554

4443

3332

2322

11

 

 

and L = 



























− nnnn ll

ll

ll

l

1,

3332

2221

11

000

...............

...............

0...0

0...0

0...00

 

such that A = LLt 
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2/1

111111

2

11 alal ==   

00 212111 == lll  

2/1

222222

2

22

2

21 alall ==+  

22

32
32322232

l

a
lall ==  

Therefore (2 i-1, 2 i-1) element 

12,1212,12
2

22,12
2

−−−−−− =+ iiiiii all  

22,12
2

12,1212,12
2

−−−−−− −= iiiiii lal  

2/1
22,12

2

12,1212,12 )( −−−−−− −= iiiiii lal  

)22,12( −− ii element. 

22,1222,2222,12 −−−−−− = iiiiii all  

22,22

22,12

22,12

−−

−−

−− =
ii

ii

ii
l

a
l  

)12,2( −ii element. 

0)0(2,212,1212,2 =+−−− iiiiii lll  

 012,2 =−iil  

)2,2( ii element. 

2/1

2,22,22,22,2
2 )( iiiiiiii alal ==  

Hence 2/1

2,22,2 iiii al =  

012,2 =−iil  

ii

ii

ii
l

a
l

2,2

2,12

2,12

+

+ =  

2/12

2,1212,1212,12 )( iiiiii lal +++++ −=  

2/1

1111 al =  
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3.6 Single bordering for LLt decomposition of a symmetric, positive definite 

and tridiagonal matrix A=(aij) of order n, where ka kk =− 012,2 : 

 

Proof: Let nAAA ....................21 be the leading principal minors of A. 

)()( 111111 lLandaA == such that 

T
LLA 111 =  

2/1

1111 al =  

 1L  = ( )2/1

11a  

for i = 2(I)n 

 

Assume that t

iii LLA 111 −−− = where (2k,2k-1) entries in the ltd matrix 1−iL are zero. 

 

0,)......,.........,( 21 == ij

t

iiii

t

ie   if j < i  

       = 1 if j = i 

 

write 













=

−−

−−

ii

t

iii

ii

i
lel

oeL
L

11,

11
 _______(1) 

 

Then i

t

ii ALL =  if 

t

iii LLA 111 −−− =  

since 1,,1 −− = iiii aa  

1,1,11, −−−− = iiiiii all  

iiiiii all =+−
2

1,
2  
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 
1,1

1,

1,

−−

−

− =
ii

ii

ii
l

a
l  

2

1,

2

−−= iiiiii lal  

that is 
1,1

1,

1,

−−

−

− =
ii

ii

ii
l

a
l  

2/12

1, )( −−= iiiiii lal  

These values iiii ll ,1, −  give iL  by (1) 

 

3.7. Algorithm: 

Algorithm for finding LLt decomposition of a symmetric, positive definite and 

tridiagonal matrix of order n in which (2k,2k-1) entries are zero  k, 

 

 Assume A=( ija ) is symmetric, positive definite and tridiagonal matrix of 

order n in which ka kk =− 012,2  

Write 2/1

1111111 ),( alaA ==  

1L = )( 11l  

for i = 2(1)n,  j = 1(1) i 

( ) ,0,................, 21 == ijiiii

t

ie   if j < i  

      = 1, if j = i  

write 













=

−−

−−−

ii

t

iii

iiii

i
aea

eaA
A

11,

1,11
 

1,1

1,

1,

−−

−

− =
ii

ii

ii
l

a
l  

2/12

1, )( −−= iiiiii lal  














=

−−

−−

ii

t

iii

ii

i
lel

oeL
L

11,

11
 

A= t

iii LLA =  

A = LLt 
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Illustration: 

 

A = 























43000

310000

00940

00470

000015

 

Step 1: i = 1 

let 2/1

111 15),15( == lA = 3.872983346 

1L  = )872983346.3()( 11 =l  

 

Step 2: i = 2 

 

2A  = 








70

01A
 

0
11

21
21 ==

l

a
l  

645751311.2)( 2/12

212222 =−= lal  

Therefore 







=

645751311.20

01

2

L
L  

 

Step 3: i = 3 

 

3A  = 













94

4

2

22

te

eA
 where e2 = (0,1)t 

 

511857892.1
22

32
32 ==

l

a
l  

591193878.2)( 2/12

323333 =−= lal  
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Therefore 












=

591193878.2511857892.1

0

2

22

3 te

eL
L  

Step 4: i = 4 

 

4A  = 














100

0

3

33

te

eA
 where e3 = (0,0,1)t 

0
33

43
43 ==

l

a
l  

16227766.3)( 2/12

434444 =−= lal  















=

16227766.30

0

3

33

4 te

eL
L  

 

Step 5: i = 5 

5A  = 













43

3

4

44

te

eA
 where e4 = (0,0,0,1)t 

948683298.0
44

54
54 ==

l

a
l  

760681686.1)( 2/12

545555 =−= lal  

 












=

760681686.1948683298.0

0

4

44

5 te

eL
L  

 A = tLLA 555 =  

A = LLt 

Where 

L = 























760681686.1948683298.0000

016227766.3000

00591193878.2511857892.10

000645751311.20

0000872983346.3
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3.8. Counting Arithmetic Operations: 

 

 We  now find the number of arithmetic operations for finding LLt 

decomposition of a symmetric, positive definite and tridiagonal matrix A of order 

n in which 12,2 −kka = 0,  k by the recursive method of theorem [3.5] . 

 

 Let iS  be the number of operations required for computation of LLt 

decomposition of a tridiagonal matrix of order i when LLt decomposition of the 

submatrix of order i=1 is known. Then S= 
−

n

i

iS
1

is the total number of operations 

required for the LLt decomposition of a given matrix A of order n. Since a2k,2k-1=0, 

S can be computed separately for both even and odd cases. 

 

Let 1A = (
11a ) and 1A = 

t

iLL1 where )( 111 lL =  

for i = 2(1)n 

 

iA =
T

ii LL where iL  = 














−−

−−

ii

t

iii

ii

lel

oeL

11,

11
 

 

And 012,2 =−kkl  

1,1

1,

1,

−−

−

− =
ii

ii

ii
l

a
l  

2/12

1, )( −−= iiiiii lal  where 02

1, − −iiii la  

 iA  =
T

ii LL  for each i  
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In this computation we don’t consider the change of sign as an arithmetical 

operation. 

 

TABLE  3.8.1 

Matrix  Computation of No. of arithmetic 

operations 

Total no. of arithmetic 

operations 

iLi , is odd 

ii

ii

l

l 1, −
 

1 

3 

 

4 

,iL i  is even 
iil  3 3 

 

Case (i) n is odd: 

Total number of operations: 

S= 1S  + ( 142 ........ −++ nSSS )+( nSSS ............53 ++ ) 

= 1+ 3
2

57

2

1
4

2

1 −
=







 −
+







 − nnn
 

Case (ii) n is even: 

 

Total number of operations 

S= 1S  + ( nSSS ........42 ++ )+( 153 ............ −++ nSSS ) 

= 1+ 3
2

67

2

2
4

2

−
=







 −
+







 nnn
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3.8.1. Comparing with no. of computations of LLt decomposition of a 

symmetric, positive definite and tridiagonal matrix of order n. 

 

S.No Matrix  No.of arithmetical 

operations 

1. Symmetric, positive definite 

and tridiagonal matrix of 

order n 

 4n-3 

2.  Symmetric, positive definite 

and tridiagonal matrix of 

order n in which (2k,2k-1) 

entries are zero. 

n is even 

 

 

n is odd 

(7n-6) / 2 

 

 

(7n-5) / 2 
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CHAPTER – 4 
 

Eigenvalues of Tridiagonal Matrices: 

 

 By definition a scalar is an eigenvalue of a square matrix A if there is a 

nonzero vector x such that Ax=x and any such x is called eigenvector 

corresponding to the eigenvalue . Thus  is an eigenvalue of A if the system of 

homogeneous equations represented by the matrix equation (A-I)x = 0. This 

system has a nontrivial solution if and only if the corresponding determinent 

det(A-I) = 0. 

 

 If A has order n the above equation turns to be a polynomial equation of 

degree n and hence by the fundamental theorem of algebra has exactly n 

solutions. It  is clear that A and its transpose At have the same eigenvalues and 

-1 is  an  eigervalue  of  A-1  whenever  A  is  nonsingular.  It  is  also true that if 

A = S-1BS then A and B have the same eigenvalues. That is, the eigenvalues 

remain invariant under a similarity transformation. 

 

 There are several methods for finding the eigenvalues of a matrix. When A 

is a real symmetric matrix Jacobi’s method Given’s method and Householder’s 

method can be used to find the eigenvalues. A very effective method for finding 

the numerically largest eigenvalue and corresponding eigenvector is the power 

method. 

 

 When we have a problem involving an unsymmetrical (assymmetric) 

matrix we  try to transform the unsymmetrical matrix into a symmetrical one 

having the same eigenvalues. For tridiagonal matrices there is a very handy and 

short way to make this transformation.  Since a symmetric matrix has always real 

eigenvalues (proof supplied in [4.2] ) this method can be useful to test if a 

general tridiagonal matrix has all real eigenvalues or not. The contents of this 

section are from [ 1 ]. 
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4.1. Result [1]: 

Given a unsymmetrical tridiagonal matrix A  

 

A= 





























nn ac

bac

bac

bac

ba

...00000

........................

........................

00...00

00...00

00...00

00...000

444

333

222

11

 

 

Where 1, −kk bc  have same sign, assume that there exists a diagonal matrix D 

such that S = D-1 AD. 

 

S = D-1AD  DS = AD 

 

Since A is tridiagonal S is tridiagonal 

 

let S=



























− nn ls

sls

sls

sl

1

332

221

11

......000

.....................

.....................

0...00

0...00

0...000

and D=



























nd

d

d

d

......000

..................

..................

0...000

0...000

0...000

3

2

1

 

DS = AD 

 























nd

d

d

......00

...............

...............

0...00

0...00

2

1



























− nn ls

sls

sls

sl

1

332

221

11

...000

..................

..................

0...0

0...0

0...00
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= 























nn ac

bac

bac

ba

...000

..................

0...0

0...0

0...00

333

222

11























nd

d

d

...000

...............

...............

0...00

0...00

2

1

 

 

 



























− nnnn

s

ldsd

sdldsd

sdldld

sdld

1

33323

222222

1111

......00

..................

..................

0...0

0...0

0...00

 

= 



























− nnnn

s

dadc

dbdadc

dbdadc

dbda

1

33323

322212

2111

......00

..................

..................

0...0

0...0

0...00

 

 

 
1111 dald =   

2111 dbsd =  

1212 dcsd =   
2222 dald =   3222 dbsd =  

0   2323 dcsd =   3333 dald =  4333 dbsd =  

------------  -------------  ------------- ------------- 

------------  -------------  ------------- ------------- 

2121 −−−− = nnnn dcsd ,  nnnnnnnn dbsddald 1111111 , −−−−−−− ==  

11 −− = nnnn dcsd   nnnn lald =  
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let 
212211111 ,,1 csddbsandald ====  

 
nn alalal === ........,,........., 3322
 

 for i = 1(1)n-1 

 

Case(i) 000 1 === +iii csb  

Case (ii) 00 1  +ii cb  because 

00000 111 ===== +++ iiiiiii bdbssdc  contradiction. 

 

Let 00,0 1
1  +
+

i

i
ii

b

c
andcb  

idiiiiiii dcsddbsd +++ == 11,  

 
ii

ii

i

i

dc

db

d

d

1

1

1 +

+

+

=  

 212

1 i

i

i
i d

b

c
d +

+ =  

 01 +

i

i

b

c
 and i

i

i
i d

b

c
d ..1

1

+

+ =  

let 00,0 1
1  +
+

i

i
ii

b

c
andcb  

iiiiiiii dcsddbsd 111, +++ ==  

212

1 i

i

i
i d

b

c
d +

+ =  01 +

i

i

b

c
  contradiction. 

Therefore the diagonal [d1,d2,d3,………..dn] can be obtained by the following 

iterative “square root” formula. 

1

1

2

2

3

31

1

2
21 .............1 −

−

==== n

n

n
n d

b

c
dd

b

c
dd

b

c
dd  
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Condition for symmetrical tridiagonal transformation to have real 

eigenvalues: 

 

This process can be applied if the square root argument is positive. 

 

nk
b

c

k

k )1(2,0
1

=
−

 

 

 The above conditions are sufficient to transform the unsymmetrical 

tridiagonal matrix A into a symmetrical tridiagonal matrix S. The similarity 

transform doesn’t alter the eigenvalues. Thus the matrices S and A have the 

same eigenvalues. Further the eigenvalues of S are real in view of the following. 

 

4.2. Theorem[2]: The eigenvalues of a real symmetric matrix are real. 

 

Butterfly test for real eigenvalues of tridiagonal matrix [ 1 ]: 

As is mentioned  above If each element couple of a tridiagonal matrix Ck,bk-1 (this 

couple, like a butterfly, is put in evidence in the figure) have the same sign, then 

the eigenvalues are real. 

 





















44

333

222

11

00

0

0

00

ac

bac

bac

ba

 

 We can say as well that the matrix can be converted in symmetrical form 

by a similarity transform, ie S=D-1AD, where S is a  symmetrical tridiagonal 

matrix. 
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Illustration: Consider the following 8 x 8 tridiagonal matrix, 

 

A = 

































−

−−

−−

−

13000000

272200000

018850000

005516000

00041200

00008710

00000464

00000015

 

Test : 4 x 1 > 0 

 1 x 4 > 0 

 2 x 8 > 0 

 (-16) x (-4) > 0 

 5 x 5 > 0  

 2 x 18 > 0 

 3 x 27 > 0 

 

 The butterfly test is positive. So the matrix can be converted into 

symmetric one by similar transform. With the iterative formula, we find the 

elements of diagonal matrix. 

...............12.
4

1
21.

1

4
1 321 ===== ddd  

        D  = diag ( 1, 2, 1, 1/2 , 1, 1, 1/3 , 1/9  ) 

        D-1= diag (  1, ½, 1, 2, 1, 1, 3, 9 ) 

Performing the similarity transform,  S = D-1AD 

We get the symmetrical tridiagonal matrix 
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S = 

































−

−−

−−

−

19000000

92600000

06850000

00558000

00081400

00004720

00000262

00000025

 

 

Breaking down method  [ 1 ]: 

 When the tridiagonal matrix has one or more zero elements in the 

subdiagonal the above process cannot be applied. In this case the problem can 

be simplified breaking the given matrix into sub-matrices by partitioning. 

Illustration: 

































−

−

−

−

19000000

52100000

03810000

00553000

00001100

00004740

00000262

00000025

 

 





















−

−

1100

4740

0262

0025

 

   





















−

−

1900

5210

0381

0055

 

 

 

  0 

  3 
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B = 





















−

−

1100

4740

0262

0025

 C= 





















−

−

1900

5210

0381

0055

 

 

 For each of B,C  we can now apply  the process of similarity transform for 

finding the symmetrical form. Then, we find the eigenvalues of B,C  separately. 

The union of these two sets of eigenvalues gives all the eigenvalues of the 

original matrix. 

 

 We consider symmetric, positive definite and tridiagonal matrix A=(aij) in 

which a2k,2k-1=0. 

 

 Since matrix A is symmetric tridiagonal, breaking down method can be 

applied to find eigenvalues. 

 

Illustration: 

A= 























43000

310000

00940

00470

000015

 

 

Submatrices are 

S1 = (15) ,  S2 = 








94

47
 ,  S3 = 









43

310
 

 

Eigervalue of S1 is 1 = 15 

Eigenvalues of S2 are 2 = 12.12310563     3 = 3.876894374 

 

Eigenvalues of S3 are 4 = 11.24264069               5 = 2.757359313 
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Therefore eigenvalues of A are 

 

1 15 

2 12.12310563 

3 11.24264069 

4 3.87689374 

5 2.757359313 
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SECTION – 5 
QR Algorithm for Tridiagonal Matrices: 

 

Definition: The matrix norm, ||A|| where A is a matrix of order n, is a non-

negative number which satisfies the properties: 

(i) ||A||>0 if A0 and ||0|| = 0 

(ii) ||cA||= |c| ||A|| for an arbitrary complex number c 

(iii) ||A+B||  ||A|| + ||B|| 

(iv) ||AB||  ||A|| ||B|| 

Definition: (Frobeneous) Euclidean norm: ||A|| = 
=

n

ji

ija
1,

2/12 )||(  

QR Decomposition : 

5.1 Theorem [ 2 ] : If A is a matrix of order n there exits an orthogonal matrix Q 

and an upper triangular matrix R such that A = QR 

Proof : step 1 : 

For a matrix A = t

nij aaaxleta )......,(),( 1,21111 =  

and y1=(||
1x ||2 0,0,……0)t, then there is a Householder matrix P1 such that 

P1x1=y1 and 

P1A = 

























)1()1(

2

)1(

2

)1(

22

)1(

1

)1(

1221

...0

............

............

...0

...||||

nnn

n

n

aa

aa

aax

 

Step 2: Let 2x = ( tt

n xyandaa )0,.....0,||||,0()....,.........,0 222

)1(

2

)1(

22 =  then as above 

there is a householder matrix P2 such that P2 2x  = 
2y and  
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P2P1A = 



























)2()2(

3

)2(

3

)2(

33

)2(

2

)2(

2322

)1(

1

)1(

13

)1(

1221

...00

..................

..................

...00

...||||0

...||||

nnn

n

n

n

aa

aa

aax

aaax

 

 If we continue this procedure, we will have Householder matrices, 

P3,……….., Pn-1 such that  

Pn-1Pn-2……….P2P1A = R

r

rr

rrr

rrrr

nn

n

n

n

=



























...000

...............

...............

...00

...0

...

333

22322

1131211

  is an upper triangular 

matrix. 

 Since all PI’s are symmetric and orthogonal, 

 PI
-1=PI

t=Pi 

Let Q = Pn-1Pn-2……………….P2P1  Then QA = R   Therefore A = QR 

Note: Q is orthogonal but not symmetric. 

 

5.1. QR Algorithm[ 5 ]: Method of finding unitary matrix Q of order n and upper 

traingular matrix of order n for a matrix A = )( ija of order n. 

 Let ak,qk, and rk be the kth column of A,Q,R respectively. 

 

Step 1:  

For k = 1 choose 11r =|| 1a || 2  = 2/12

1

2

21

2

11 )...............( naaa +++  

         1

1

111 arq −=  
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Step 2: 

for k = 2(1)n 

  

)(

||||

1)1(1,

1

1

1

1

1




−

=

−

−

=

−=

−=

−==

k

i

iikkkkk

k

i

iikkkk

k

t

iik

qrarq

qrar

kiforaqr

 

Illustration:  

 

A = 
















540

432

021

 

Step 1: 

K=1, 236067977.2)( 2/12

21

2

1111 =+= aar  

tarq )0,894427191.0,447213595.0(1

1

111 == −  

 

Step 2:   K=2, 

577708764.3212 == aqr t

i  

024922359.4|||| 112222 =−= qrar  

tqrarq )99380799.0,049690399.0,099380799.0()( 1122

1

222 −=−= −  

 

Step 3:K=3,  

577708764.33113 == aqr t  

77062399.43223 == aqr t  

333333355.2|||| 223113333 =−−= qrqrar  

)( 2231133

1

333 qrqrarq −−= −  

= (-0.8889036,0.444451799,0.110963896)t 

 

compute 
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Q = 
















−

−

110963896.099380799.00

444451799.0049690399.0894427191.0

8889036.0099380799.0447213595.0

 

 

R = 
















333333355.200

77062399.4024922359.40

577708764.3577708763.3236067977.2

 

 

QR = 
















540

432

021

 = A 

We examine how the QR algorithm gets simplified for TD matrices. 

 

5.2. QR factorization for tridiagonal matrices: 

Let A=( )ija be tridiagonal matrix of order n. 

So, aij = 0 for |i-j| >1 

and A = QR where Q is unitary and R is upper traingular matrix. 

let Q = )( ijq  and R = )( ijr where 0=ijr   for i-j 1 

from this of section 5  

20 −= jiforqij  

We have 0=ija  for i - j  2 

So 

)(
1

1

1 
−

=

− −=
j

i

iijjjjj qrarq  
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



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
































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


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
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
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























−

































−

































−

−

−

−

+

−−

0

0

.

.....

0

0

0

0

0

0

0

0

1,

1,2

1,1

,1

32

22

12

2

21

11

1

,1

,11

jj

j

j

jjjj

jj

jj

jj

jj
p

p

p

r

p

p

p

r

p

p

r

a

a

a
r  

where niforarp ii )1(1,1

1

111 == −  

njforprarp jiijijjjij )1(2),( 1,

1 =−= −

−   

for k  j+2, the kth term in each of the column is zero. 

Hence the kth term of qj, is zero. 

This is true  k   j+2 and  j  1 

 Q is upper Hessenberg. 

We now present our results on QR factorization of a matrix in  SLTD. 

5.3. Result:  

If  A  is symmetric, positive definite and tridiagonal matrix of order n in which 

a2k,2k-1=0  k then the matrix Q in QR factorization is also of the same type as A 

and in the upper triangular matrix R, r2i-1,2i =0 and rij=0 for i-j  1 and j –i 2. 

 

Proof: k=1 

11111 |||| aar ==  

tparq )0.....00( 111

1

111 == −  where 

njforprarp

niforarp

jiijijjjij

ii

)1(2)(

)1(1

1,

1

1

111

=−=

==

−

−

 

 

k = 2 

tt aapaqr )0..........00)(0........00( 3222112112 == =0 

2/12

32

2

22

2112222

)(

||||||||

aa

aqrar

+=

=−=
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2

1

221122

1

222 )( arqrarq −− =−=  

=( tpp )000 3222  

 

for  i =1(1)n/2,  when n is even 

 = 1(1) (n-1/2),  when n is odd 

 

k = 2i 

0)0,.....00,,......00)(0.....00( 2,122,211212,1 === +

t

iiiii

t

i aapaqr  

 

for j = 2(1) 2i-1  

Assume evenisjifppq t

jjjjj ,)0..............00( ,1+=  

           = oddisjifpp t

jjjj ,)0..............00( 1−  

 

 

(i) j is even  

    i

t

jij aqr 22, =  

 = t

iiiijjjj aapop )0....,.....00)(0....0........00( 2,122,2,1 ++  

 = 0)0()0()0()0( 2,122,2,1 =+++ ++ iiiijjjj aapp  

(ii) j is odd 

    i

t

jij aqr 22, =  

 = t

iiiijjjj aapp )0....,.....00)(0....0........00( 2,122,2,1 +−  

 = iiiijjjj aapp 2,122,2,1 )0()0()0()0( +− +++  

 = 0 

 02, =ijr  for j=1(1)2i-1 

||||
12

1

2,22,2 
−

=

−=
i

j

jijiii qrar  

 = |||| 2ia  
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iiii arq 2

1

2,22

−=  

 = t

iiii pp )0......0,......00( 2,122,2 +  

 

12112,1

,12

++ =

+=

i

t

i aqr

iK
 

 = ( t

iiii aap )0.....,....00()0.....00 12,1212,211 +++ = 0 

for j = 2(1) 2i-1 

 

j is even,  

1212, ++ = i

t

jij aqr  

= t

iiiijjjj aapp )0,......,...00)(0....0,....00( 12,1212,2,1 ++++  

= 0)0()0()0()0( 12,1212,2,1 =+++ ++++ iiiijjjj aapp  

 

 

j is odd  

1212, ++ = i

t

jij aqr  

= t

iiiijjjj aapp )0,......,...00)(0....0,....00( 12,1212,2,,1 +++−  

= 0)0()0()0()0( 12,1212,2,1 =+++ +++− iiiijjjj aapp  

 12)1(2012, −==+ ijforr ij  

12212,2 ++ = ii
t

ii aqr  

= t

iiiiiiii aapp )0......,...0)(0.........00( 12,1212.22,122,2 ++++    

= 012,122,1212.22,2 + ++++ iiiiiiii apap  

 


=

++++ −=
i

j

jijiii qrar
2

1

12,1212,12 ||||  
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= 0|||| 212,212 − ++ iiii qra  

)( 212,212

1

12,1212 iiiiiii qrarq ++

−

+++ −=  

= t

iiii pp )0,......,......00( 12,1212,2 +++  

 

QR = A 

 

where A = 
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



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





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







− nnnn pp
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...............
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  and   R = 

























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



nnr
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rr
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0...0000
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33
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