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INTRODUCTION

Matrices in general, and tridiagonal matrices inparticular, play an
important role in several areas of Applied Sciences. We encounter tridiagonal
matrices very often in Multivariate analysis , Image analysis, Financial market
studies, Circular data analysis, Biomathematics, to mention a few. In “Parallel
Computing “ there is a mention about cholesky decomposition of tridiagonal
symmetric matries [ llan Bar On in 1995] . There is also a mention about
tridiagonal matrices in Mixture analysis in Fisheries and Distributed large — scale
visualization in Networking problems. It is well known that there exists an analytic
expression for the eigenvalues of a tridiagonal matrix of the type

S
c ab
c ab

cahpb

- -

In early 1990’s it was a hot problem to extend the result to a block —
tridiagonal matrix required in certain algorithms of computer networks.The wide
range of applications and various algorithms for matrix operations on tridiagonal
matrices , we are motivated to make a detailed study of this topic and present our
observations and our own results along with algorithms on tridiagonal matrices
and relatives in the form of this dissertation. We observe the properties of the set

of tridiagonal matrices and the set of the lower tridiagonal matrices and adopt



some techniques developed by Rami Reddy, B., [ 7 ] and apply to the tridiagonal
matrices for finding inverse of nonsingular tridiagonal matrices and lower
tridiagonal matrices by recursion method. These form Section 1 of this

dissertation.

LU decomposition for matrix inversion is a basic problem in numerical
analysis where the complexity studies have vyielded fruitful results. LU
decomposition is also suited to compute eigenvalues and eigenvectors of
matrices. The concept of LU decomposition is taken from [ 2 ] and arrive at new
algorithm for finding LU decomposition of tridiagonal matrix and symmetric ,

positive definite and tridiagonal matrix by single bordering in Section 2.

In the progress of work , we come across the special type of
symmetric, positive definite and tridiagonal matrices in which ( 2k, 2k-1 ) entries
are zero V k.These matrices possess some special features and are discussed in
Section — 3. We present a few results and algorithms of our own obtained in this
process. These results will avoid many a hurdle in the adoption of tridiagonal
matrices in various streams . Number of computations will also be reduced in

finding inverse of a matrix by cholesky decomposition.

In the process of survey for tridiagonal matrices we find a beautiful
and very handy method [ 1 ] . In this method an unsymmetrical tridiagonal matrix
shall be transformed to symmetrical form which simplifies the computation of
eigenvalues of tridiagonal matrices. Breaking down method [ 1 ] for symmetric
tridiagonal matrices turns our work easy to find eigenvalues of tridiagonal matrix.
Application of the above method to the special type of symmetric, positive
definite and tridiagonal matrices in which ( 2k, 2k-1 ) entries are zero VK, is

discussed in Section — 4.

The concept of QR factorization of a matrix is taken from [ 4 ]. In
Section — 5, we present some observations on QR factorization of tridiagonal



matrices and special type of tridiagonal matrices in which ( 2k, 2k-1 ) entries are
zero VK.



CHAPTER - |

All the matrices under consideration are square matrices over the field of
real numbers. We call the first diagonal below the principal diagonal of a square
matrix A, the subdiagonal of A and the diagonal above the principal diagonal as

superdiagonal.

A tridiagonal (also called Jacobi) matrix is a matrix which has zeros except
on the principal diagonal, the superdiagonal and the subdiagonal. Thus

A =(a;) is tridiagonal when a; =0 for [i-j| > 1.

A matrix which has zeros except on the principal diagonal and the
subdiagonal is known as lower tridiagonal matrix (I t d).

A matrix which has zeros except on the principal diagonal and the
superdiagonal is known as upper tridiagonal matrix (u t d).

A matrix of the form P =1 -2 W W! where W is a column vector, WeR",
Wi=(w1.....wn) such that WW = w’+ w;+ wi+...w:=1 is known as

Householder matrix. Clearly P is symmetric and orthogonal.

An upper triangular matrix which has zeros except on the subdiagonal is

known as upper Hessenberg matrix.

A = (a;)is upper Hessenberg matrix when a; =0 for |>j+1.

1.1. Proposition : The set TD of all tridiagonal matrices of order n is a vector

space of dimension 3n-2.

Proof: Since 0€TD, TD # ¢. Let AB €TD.

If A=(a;) and B = (b; ) then A+B = (a; +by)
Since &, =0and b, =0 if [i]>1,
a; +b;=0 if |i-j|>1

=A+BeTD.



Hence TD is closed under addition.

Letk € R. Then kA = k(a;) = (ka;)
Since ;=0 if |ifj|>1, ka; =0 if [ij]>1

TD is closed under scalar multiplication. Hence TD is a subspace of the vector
space of all matrices of order n and hence TD is a vector space by itself. Write

E ; for the matrix of order n, with 1 in the (i, ] )t place and zero elsewhere.

LetB={E,/ |ij|>1,1<ij<n}

BcTD If ) x;E; =0, then0=x; = > x,E; = x; =0
i i

ij —ij ij —ij
Hence B is linearly independent.
LetA e TD, A=(a;) where a; =0, if [i—j|>1.

Then A = ZAU. where A, has a; in (i, j)" place and 0 elsewhere

i,j=1

= ZaijEij and aj; =0 if ||_J|>1
i1

= B spans TD.

Since B is a linearly independent subset of TD and spans TD, B is a basis
for TD.

Since B has (3n-2) elements, dimension TD = 3n-2.
1.2. Proposition: The set LTD of all lower tridiagonal matrices of order n is a
subspace of TD and has dimension 2n-1.
Proof: clearly 0 € LTD < TD

IfA,BeLTD,
A =(a;) and B = (by)
Where a; =b; =0 if j—i>1

If X,y € Rthen xA +yB = (xa;+yb;)=0 ,if xa;+yb;=0, forj-i>1



Since a; =b; =0 ifj-i>1
hence xA+yB e LTD

Since L T D is a nonempty set and is closed under addition and scalar

multiplication, L T D is a subspace of T D.

LetBi={E;/j-i1>1,1<1ij<n}
Then B1 < T D and Ba is linearly independent

LetA e LTD,A=(a;)wherea;=0 if j-i>1

Then A= > a;E; when j—i>1
i) j=L

~.B1spans LTD

Since Bz is a linearly independent subset of LTD and spans LTD, B: is a basis for

LTD and dimension LTD = 2n-1.

Remark 1.3: TD and LTD are not closed under multiplication.

lllustration (i)

2 -4 0 0 O 9 -2 0 0 O
-1 3 5 0 0 4 7 1 0 O
A=| 0 2 4 1 0| B=|0 2 6 8 0
0 0 7 5 6 0 0 -9 4 -1
0 0 0 -3 1 0 0 0 5 2
2 -32 -4 0 O
3 33 33 40 O
AB=| 8 22 17 36 -1
0 14 -3 106 7
0 0 27 -7 5
~.AB ¢ TD.



lllustration (ii):

"2 00 0 0) 9 00 0 O
13 0 00 47 00 0
c={ 02 4 00 D=|0 2 6 0 0
00 7 50 0 09 4 0
(00 031 \0 005 2
then
18 0 0 0 0
3 210 0 0
cD=| 8 22 24 0 0
0 14 -3 20 0
0 0 27 -7 2

CD ¢ LTD eventhough C € LTDand D € LTD

1.4. Result: The product of two tridiagonal matrices is pentadiagonal, i.e it has
zeros when |i—j| > 2.

Proof : Let A= (a;) and B =(b;) where a; =b; =0 if |[i—j[>1
Then AB = (c;) where
Cy= Dlayb; 1< i j<n
P :
= by Faph,; e + a0 5 b Faby A ab ey by
case (i) j>i+2

We have a; =8, =....courrurn. a,,=0

Cij = ai,i,lbi,lyj +a:b. +a. b . +.... +a, b

i ™~j ii+17141, j

j—ik1>1 = bisj= 0



j—1>2 = bij=0
j—i1+1>2+1 = bi-1j = 0
Therefore cj = 0 if j>i+2
Similarly ifi>j+2, ¢j=0

Thereforeif | j—i|>2, then cj=0

1.5. Remark: The inverse of a nonsingular tridiagonal matrix is not necessarily
tridiagonal.

llustration :
12 0,00
3 41(00
B| C
A=|0 5 2(3 0] = )
EI D
0 0 714 1
0 0 0]6 5

We use the partition method [ 4] for computation of At

X 1Y
Let Al= (Z—'ﬂ where AA1 = |

V = (D - EB'C)?!
Y =-B1CV
Z = -VEB!

X=B(1 -CZ)



9 33 1 |-5 1

2 18 3 |14 14

11 -33 -1 |5 -1

4 36 6 |28 28

at=| 2 % -1} 5 -1
2 6 3 |14 14

—25 25 5 |-15 3

4 12 6 |28 28

5 5 412 1

2 2 14 14

1.6. Method of finding the inverse of a nonsingular I t d matrix:

If L is a nonsingular | t d matrix of order n , L being a lower traingular

matrix, its inverse L is a lower traingular matrix.

LetL =(l;) and L™= (x;)

where I; =0 if |j-i[>1 and
X, =0 if j>i
l, 0 0 0 X, 0 0 0
Iy 1, 0 0 Xy Xy O
Then LL = 0 I3 Iy 0 Xa1 Xg Xgg 0
O 0 0 "'In,n—l *‘nn an Xn2 " Xnn




10 0.. 0
01 0.. 0
~ 00 1 .. 0
00 0 .. 1

=l x;=1 Vi and

for i>j,0=(00............ s 13 00,0000 0neeXyy Xjipj Xijerroonoonn Xy )!

:Ii,i—lxi—l,j + 15X

it Nij

=l X,
_ iL,i-17%-1, j
= Xij = |—

ii

New Recursive algorithm for finding the inverse of a nonsingular Itd matrix of
ordern:

1.6.1 Algorithm: Given L = (I;;) where |; #0, Viand I; =0 for j—i>1
Compute i=1ton, x,= I.*
For i=2ton and j=1toi—-1

.. X ..
Compute x;= ————1

L=

10



llustration:

10000
34000
LetL=0 2 5 0 O
006 20
00017

Let L't = (x;) where x; =0 for j>i, 1< i,j<5 suchthat LL*=1

X, =1

-
Xy = A =.0.75

22

X, =21 =0.25

I, x
Xy = —2—% =0.3
|33
Xs, = 0.1, X3 = 0.2
X, =-0.9, x, =03,

X,3=-0.6,

X4 = 0.5

X;, =0.128571428, X, = -0.042857142

X, = 0.085714285, ., = -0.071428571

X = 0.142857142

1 0

-0.75 0.25
L1=1]03 -01

-0.9 0.3

0.128571428 —0.042857142

0 0 0
0 0 0
0.2 0 0
-0.6 0.5 0

0.085714285 —-0.071428571 0.142857142

11




1.7. Counting Arithmetic Operations:
We now arrive at the number of arithmetic operations for finding inverse of

a lower tridiagonal matrix L of order n by the recursive method of theorem (1.6)

Let S, be the number of operations required for computation of inverse of

a lower tridiagonal matrix of order i when the inverse of the submatrix of order i-1
n

is known. Then S = ZSi is the total number of operations required for the
i=1

inverse of a given matrix L of order n.

Let L,=(l;)and L, = (")

Fori=2(1)n
Sij=0 if j<i
=1 if j=i
et = (61,2 Sii)
L- - (Li—l Oel IJ
I Ii,i—lei—lt Iii
X, oe,
Then L, = [ - "1j
X i€t Xii
where x;, =1,
-1, X
Xij_ |,|—Il i-1,j
L'=X

12



In this computation we don’t consider the change of sign as an arithmetical

operation.

TABLE 1.7.1

Computation of

No. of arithmetic
operations

Total number of
arithmetic operations

X, fori=1(1)n

n

Xy, fori=2(1)n

j=1ltoi-1

iZ(i ~1)=n’-n

n2

Total number of computations, S = n?

13




CHAPTER -2
L U Decomposition for tridiagonal matrices:

2.1 Theorem [3]: Let A = (a;) be a matrix whose leading submatrices are
nonsingular.

Then A has LU decomposition.
Proof: The proof is through mathematical induction.

Clearly this holds for n = 1 for a,;, = (I,;) (u,,) where if u,, is prescribed arbitrarily
l,, may be determined by |, = a,,/u,,. Assume the theorem to be true for (n-1).

A

LetA:(
c a

j be a square matrix of order n.

nn

By induction hypothesis, A ,has LU-decompositon A , = L, ,U, ,,
where L, , is a lower traingular matrix while U, ; is a upper triangular matrix.
Moreover, the assumption that A , is nonsingular implies L., U, , are

nonsingular matrices.

Set x =cU_ ™ y=L_"'b

and letl ., u,, be any numbers such that

nn?

b=1L_y,c=xU,,
and xy+ |,u,, = a

nn

" U = @y — XY

nn

L 0 U
Write L = 1 andU=| " y
X I, 0 U,

L 0)\(U
ThenLU=| "* 1 Y= A
X | 0 u



By induction the result follows.

Example 2.2.1.
-1 1 -4 1 0 0 -1 1 -4
2 =|-2 4 0 0 1 -2
3 2 -3 6 -2 0 -1
-1 0 0 1 -1 4
= 2 -4 0 0o -1 2
3 -6 2 0 0

2.2. Uniqueness of the LU — Decomposition:

That the LU — decomposition is in general not necessarily unique is clear
from the following,

Example 2.2.1.

-1 1 0 1 0 0)( -1 1 0
2 4 2|1=] -2 3 0 0 2 2/3
5 0 312 2 0 0 2

2 0 0)(-1/2 -1/2 O
= -4 1 0 0 6 2
0 1/2 4 0 0 1

It is clear from the proof of theorem (2.1), that one of the leading diagonal

elements |, or u; may be prescribed arbitrarily for the unique determination of
the other. Generally, we impose the condition that u,;=1, ie the all diagonal

elements of the upper triangular matrix are prescribed to be unity. In such a
situation the LU- decomposition will be unique. We now present our results on

LU decomposition for tridiagonal matrices.

15



2.3. Result : If A is tridiagonal matrix and has nonsingular leading principal
minors, then the L, U in any LU decomposition for A are Itd and utd matrices

respectively.

Proof : since each leading principal minor is non-singular, the L and U in
traingular decomposition for each minor are nonsingular. Hence the entries in the
diagonals of L and U, are non-zero. In the general case we have many choices

for 1, and u;, from equations of the type [, u; = ki . However when we impose

the condition that u; =1 V i, and hence L;and U, are uniquely fixed. Hence we

assume that u; =1 Vi.

a, a, 0 0 0O .. 0
a, A, a,g 0O .. 0

Let A= 0 a, a;, a, 0 .. O
0 0 0 .. a4,
Ill 0 0 0 0 U, U U,
l,b, 1, O 0 0 1 Uy u,,
PR PRI P 0 0 0 Uz,

and L = U=

Inl In2 In3

such that A = LU

nn

16



a, a, 0 O 0

ay Ay ayg 0 0

0 as, Az Ay 0

0 0 0 A, A
I11 0 1 U, U U,
|21 Izz 0 0 1 Uyg U,

_ |31 Isz |33 0 0 0 1 Us,
L, 1, 1, o1 ] (o o 0 .. 1
|11 |11U12 |11U13 Illuln
|21 |22u12 + Izz |21u13 + |22u23 |21uln + |22u2n

n—

Inl InlulZ + In2 InlulS + In2u23 + In3

lu, +1..

1
ni
i=1

l,=a,, I, u, =a, =>u, =a,/l,, lu,=0=u,;=0
Similarly u, = Uy =.............. =u, =0

|21 = ay, I2|U12 +Izz =3y :>|22 =3ay _|21u12

Uy = A/ |y, 153Uy, +15U,, =0=U,, =0

Similarly Uy, =Uyg = veviiiicee =Uu,, =0
i-2

Hence I, =a,,u; =a;/l;,l; =a; - Zlikukj when |i—j|=1
k=1

17



i—
. =a;-) L, if1<i<n, 2<j<n.
k=1

Ifi—j >1,i=3ton,j=1ton,then (i, )" element in the product LU is

Lauy; + Uy + e, +15U; 5 +1u; =0

Since I, =1, =...cc...... =1;5=0, 1;Y=0=1;=0

Similarly if j—i >1, j=3ton, i=1(1)n, the (i,j)" element in the product LU is
LUy + Uy + e, +1 55U 4 +1u; =0

Since U, =U,; =.....c...e. =U;5;=0 Ilu;=0=>u; =0

Hence L in the product L U is a lower tridiagonal matrix
eL=()ifi—-j>1

and U in the product LU is an upper tridiagonal matrix
ieU=(uy) if j—i>1

2.4. LU Decomposition of a tridiagonal matrix by single bordering:

Let An be tridiagonal matrix of order n whose leading principal minors are
nonsingular and ei be the column vector with i components having 1 in it

position and zero elsewhere. Let A, ,be leading principal minor of order n -1
having Itd, utd decomposition, A =L, , U, where the diagonal in U,_, consists

of 1’s alone.

Proof: For 1<i<n-1, let e,;=(0,0,........ 1)twith i components

let A, =L U, where
_ An—l an—l,nen—l _ Ln—l Oen—l
A= t b o
an,n—len—l ann n,n—len—l nn

18



An—l an—l,nen—l _ Lnfl Oen—l U n-1 |"In—l,nen—l
t - t t
an,n—len—l ann In,n—len—l Inn Oen—l 1

_ Ln—1U n-1 u n-1,n I n-1,n-1 en—l]

t
In,n—lun—l,n—l en—l In,n—l un—l,n + Inn

= A.=L, Uy

a, .6, =U .l e,

n-1,n n-1,n"n-1,n-1

t t
an,n—le n-1 = In,n—lun—l,n—len—l

a'nn = In,n—lun—l,n + Inn
a
_ n-1,n
= un—l,n - |
n-1,n-1

since u;=1 for i=1(1)n

In,n—l =a,

l,=a,—1,,.U,,,, therefore A =L U,

Hence A= LU

2.5. Algorithm for finding LU decomposition for tridiagonal matrix A = (a;)

of order n by single bordering:

Write A =(a,), |, =a;
L =)
Fori=2(1)n
j=1Q)i
€ ;= (01,1 Oi1,2, cvnveenannnnns di-1,i-1)t where §j=0, if j<i

=1, if j=i

19



. Ai—l a'i—1,i ei—l
Write A = .
Qi € 8

2.5.1. llustration:

2 3 0 0 0
1 -1 -2 0 O
A=(0 1 3 -20
0O 0 6 1-4
o 0 0 3 -1
Stepl:i=1

Let A, =(2)and L, = (I;),U,= (1) such that

LU, = A
l,=a,=2,u,=1

20



Step 2:1=2

_(A 3
Let A, —(1 _J

— a12 —
u, = 1 15
11

l, =a, =1

2 1 1 15
L,= and U,=
0 -25 0 1

Step3: i=3
A, -2,
Let =
& (195 3 ]
l,,= 28 =08
22
l, =2, =1

L, Oe, U, 0.8e,
Ly =1, andU, =|
le, 2.2 Oe, 1

u, = Tﬁ = -0.909090909
33

e = a,-1,, Uy, =6.454545455

21



L, Oe, U,
L, =1 and U, =|
Be, 6.454545455 Oe,

Step5: i=5
Uy = Tﬂ = -0.619718309
44

|54 = a54 :3

= a, — |y, U, =0.859154929

|55

L, Oe, U,
Ls =], and U, = .
3e, 0.859154929 Oe,

L5U5 = AS
2 0 0 0 O 1
1 -250 0 O 0
Finally A=A, =0 1 22 0 O 0
0 O 6 I, O 0
0 O 0 3 | 0

where |, = 6.454545455, |, = 0.859154929
u; =0.909090909, u, =-0.619718309

22

~0.619718309%,

—0.909090909,

1

1

|

|



llustration 2.5.2.

2 3 0 0 O
1 0 -2 0 O
A= o 1 3 -2 0
0 0 6 0 -4
0 0 O 3 -1
As above we get
l, 0 0 0 O 1 wu, 0 0 O
l,, I, 0 0 O 0 1 u, 0 0
L={0 I, I 0 O [(andU=|0 O 1 U, O
0 l, 1, O 0 O 0 1 uy
0O 0 0 I, Ig 0O 0 O 01
where |, =2 u, =15
l,, =1, 1,, =-15

l,, =1, |,, = 1.666666667, u,, = 1.333333333

l, =6, 1,=7.2 Uy, =-1.2

l,, =3, |, = 0.666666666 U, = =0.555555555
LU=A

2.6. This algorithm is valid only when all the principal minors are nonsingular.

Even otherwise one may get such a L and U so that A = LU, even though the

algorithm falils.

23



llustration:

4 6 0 0 O

6 9 12 0 O
A=|0 0 19 5 O

0O 0 8 -5 -6

O 0 0 -3 18
Stepl: i=1

Let A=(4), |, =a, =4, u,; =1
L, = ()Y, =(1)

Step 2: i=2
A = 4 6
6 9
l,, =a, =6
f o 63
nw 4 2
Iy, = ay, — 1y Uy,
=9-6(3/2)=0
Up =1
L 0 U
SRR
Iy l,, 0
Step3: 1=3
A 12e,
.
oe, 19
l;, = a;, =0



This is not possible
However we have A = LU

2 0 0 o0 O 2 3 0 0 O
3 4 0 0 O 0 0 3 0 O
WhereL=/0 3 5 0 O|,U=0 0 2 1 0
0o 0 4 3 O 0O 0 0 -8 -2
0O 0 0 1 5 0o 0 0 o 4

2.7. Counting Arithmetic operations:

We now find the number of arithmetic operations for
finding LU decomposition for a tridiagonal matrix A of order n by the recursive
method of theorem (2.4).

Let S, be the number of operations required for computation of

LU decomposition for a matrix of order i when LU decomposition of the submatrix
of order i =1 is known. Then S = Zsi is the total number of operations required
i=1

for the LU decomposition of a given matrix A of order n.

Let A =(a,) = L, U, where L,=(a;),U, =(1)

fori=2(1)n
Li Oe,_ U. U.. .e
A = LU, where L; = ' . " and U= " L1511
iic1€i ii Oe'is 1
a.
Uiy = et
Ii—l,i—l
Ii,i—l =8,
Iii = & _Ii,i—lui—l,i

25



In this computation we don’t consider the change of sign as an arithmetical

operation.
TABLE 2.7.1
Computation of No. of Arithmetic Total number of
Operations arithmetic operations
L, 2
: 3
U, 1
Total number of operations =3+ 3 + ............... (n-1) times = 3(n-1)

Note : If we assume that u;= 1 Vi, then the representation is unique and the

number of arithmetic operations is 3(n-1).

Comparison:

The arithmetic operations required for computation of L and U in A = LU
are counted in[ 7] and are found to be (1/6 )n(n-1)(4n+1), where n is the order
of A.

In the case of a tridiagonal matrix where our algorithm (2.5) is applied, this

number reduces to 3(n-1).

2.8. LU Decomposition of a symmetric, positive definite and tridiagonal
matrix A by single bordering:

Let A = A, be symmetric, positive definite and tridiagonal matrix of order n
and e, be column vector of order i having 1 in i position and O elsewhere. Let
A, ,be the leading principal minor of A, of order n-1. Assume that

n

A, =L, ,L'sawhere L, is Itd (2.3) then A = LL!
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whereL=| " |

nn
Oe L | e
n-1 n-1 n-1 1%~
Proof: LLt = : ) nntent
n,n—len—l Inn 0e'na Inn
t
_ Ln—l Ln—l In,n—l Ln—l en—l
- tt 2 t
|n’n_len_l Ln—l I nn-1 €n1 €
An a e
-1 n-1,n ~¥n-1
= . =A
an,n—len—l an,
t
Aa=Lly
Q1€ = In,n—lln—l,n—len—l

t t
an,n—len—l - In,n—lln—l.n—len—l

g2 2
ann - In,n—l + Inn

Since A is symmetric a; = a; for 1<i,j<n

a‘n—l,n = an,n—1
I — an,n—l
n,n-1— |
n-1,n-1

— 2 1/2
Inn - (ann _In,nfl)

An_l a‘n—l,n en—l

t
a‘n,n—l en—l ann

I
>

Hence LLT =
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2.9. Algorithm for finding the LU Decomposition of a symmetric, positive

definite and tridiagonal matrix A = (a; ) of order n:

Assume A = (g;) is symmetric, positive definite and tridiagonal marix of order n.

1/2

Write A=(a,).,l; =a;
L=(l,)
fori=2(1)n,j=1()i

e/ = (8i1, 8izyenervnnnnn Sii), 8ij =0 if j<i
=1ifj=i
i Qi G
write A, = [A' ' : " 1]
ai,ifl eifl aii
a. .
... = i
" Iifl,ifl

2 \1/2
Iii = (aii _Ii,i—l)

L. Oe,
Li — i-1 i-1
Ii,i—l eit—l Iii

A= A=LL

oA =LLE

2.9.1. lllustration:

15 4 0 0 O
4 7 1 0 O
A=|10 1 9 6 O
0O 0 6 10 3
0O 0 0O 3 4

28



A is symmetric, positive definite and tridiagonal matrix of order 5.
Stepl: i=1

Let A = (15), I,,= (15)Y? = 3.872983346
oo L, =(3.872983346)
Step2: i=2

S

321 _ 1032795559

11

|21

l,, = (a,, —12,))"? = 2.435843454

(4 4
? [1.032795559 2.435843454)

L, = 22 =0.410535413

22

l,, = (a5 —15,)"?=2.971777359

L= L, Oe,
* 10410535413,  2.971777359
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Step4: i=4

A, 6e
A, = ( t :
6el 10

|y
33

|, = (2, —13)"? = 2.433857868

L=
* " 2.018993779%!
Step5: i=5

A, 3e,

el 4

|54

ls = (as; —12)"%= 1575014218

L4
L, = t
1.232611008e,

where L, =

|, = 3.872983346
l,, = 1.032795559
|,, = 2.435843454
l,, = 0.410535413

= % 5018993779

Oe,
2.433857868

- ‘?ﬂ = 1.232611008
44

Oe,
1.575014318}
0O 0 o0 0
, 0 0 0
l,, 1, 0 O
|43 |44 0
0 0 ls, 155
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l,, = 2.971777359
l,, = 2.018993779
l,, = 2.433857868
l,, =1.232611008
l,, = 1.575014318

2.10. Counting Arithmetic Operations:

We now find the number of arithmetic operations for finding LL!
decomposition of a symmetric, positive definite and tridiagonal matrix A of order
n by the recursive method of theorem (2.8).

Let S,be the number of operations required for computation of LL!

decomposition of a matrix of order i when LL! decomposition of the submatrix of

order i-1 is known. Then S = ZSi is the total number of operations required for
i=1

the LL' decomposition of a given matrix A of order n.

Let A= (a,)= LLwhere L, = (@)
fori=2(1)n

Liy Oe;_,
A= L,L; where L, = .
;.8 |

i-1 ii

ai,i—l

and I;; ;=
i-1i-1

—_ 2 1/2
i = (& —15y)
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In this computation we don’t consider the change of sign as an

arithmetical operation.

TABLE 2.10.1
Computation of No. of arithmetic Total number of
operations arithmetic operations
Ii,i—l 1
3 3 4

S, = total number of arithmetic operations of L, =1

s:a+ia
i=2

=A+H4+44+.. . (n-1) times
= 1+4(n-1) = 4n-3

32




CHAPTER -3

In this section we consider the special type of Itd matrices in which _lz2k2k-1=0 Vk.

4 0 0 0O O
0 — 0 0O O
lllustration: A= |0 1 7 0 0
0 0 o 2 0
0 0 0 -3 5

3.1. Result: The set SLTD of all (nxn) ltd matrices in which (2k,2k-1) entries are
zero V k is a vector space of dimension p, where

_3n-1
p =

, ifnis odd and E if n is even.

This vector space is a ring with identity with respect to matrix multiplication.

Proof:

Step 1: clearly Oe SLTD. So SLTD # ¢

LetAB e SLTD,a € R

where A = (a; ), B = (b;) in which a,, s =y, =0 Vkandj—i>1
= A+B = (aij)+(bij)= (aij +bij)

Since a; =0 and b; =0 if j—i > 1 and a, 5 ; =0y ;=0 VK

a; +b; =0 if j—i>1and a, 5, =by ,=0 VK

Hence A+B € SLTD

Leta € R

O‘A:(X(aij): (aaij)

Since a; =0 ifj—i>1anda,,_, =0 Vi
aq; =0 ifj—i>1landay , ,=0 Vi
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Hence oA € SLTD

Therefore SLTD is a nonempty set and is closed under addition and scalar
multiplication.

Hence SLTD is a vector space.

Write E; for the nxn matrix with 1 in the (i,j)"" place and zero elsewhere.
LetB2={E;/j-i>11<i, j<n and (2k,2k-1) entries are zero vk}

then B2 < TD and Bz is linearly independent.
Let A e SLTD, A= (aij) where a; =0, ifj—i>1anda, ,_, =0 Vk

then A = Zaii E; whenj—i>1anda, , , =0 Vk
i1

-.B2 spans SLTD.

Since Bz is a linearly independent subset of SLTD and spans SLTD, B: is a basis
for SLTD and dimension of SLTD = p

Step 2: SLTD is closed under matrix multiplication which is not necessarily

commutative.

AB = (p;) where p;=> a,by
s=1

Pokisok = Aokiaok Dokok T Qokinoken Dakeaok

Pok ks =0
p; =a;b;, where i=1(1)n

..ABe SLTD

Remark: If k>1, SLTD is not necessarily commutative with respect to

multiplication.

Example : A =

o o o k-
o P, v o
o ®Y o o
> o o o
o o o b
o w O
o —» O O
N O O o
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(3,2) element in AB = 10
(3,2) elementin BA=7

3.2. Result: The inverse of a nonsingular matrix of SLTD is also a matrix of
SLTD.

LetL e SLTD when L = (I; ) in which 1, ,,, =0 Vk

Clearly the inverse L is lower triangular.

x, 0 0 .. 0
Xoy Xpp 0 ... 0
Xa X X 0
an Xn2 Xn3 Xnn

(2k,2k-1) element in the product LLt =1 is
Lois Xioea +hog i Xooeq Fooet o sy Xo i =0
Since X,y = o= Xy 50 =0and X, 4, #0, it follows that I, ,,, =0
If L=L, is a nonsingular Itd matrix of order n, the leading principal minors
are also of the same type. This suggests a recursion formula for L*=L;" in terms

of the inverse of L,',where L, ,is the n-1 x n-1 matrix obtained by removing the

n" row and n" column of L, .

3.2. Method of finding the inverse of a Itd matrix of order n in which

(2k,2k-1) entries are zero by single bordering:
Theorem: Let L be a Itd matrix of order n in which (2k,2k-1) entries are zero. If L

is nonsingular then L is a Itd matrix of order n in which (2k,2k-1) entries are

Zero.
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L X, =I
Ln—l Oen 1 xn—l Oen 1 In—1 Oen 1
In,n—lert1—1 Inn Xn,n—lert1—1 Xin B Oetn*1 1
LoaXoy==1
| X =

nnnn T

t t_
In,n—len—lxn—l + Inn Xn,n—len—l - 0
-1
= Xnn - Inn

| +1 X 0

n-1,n-1 nn“*n,n-1 =

T In,n—l
n,n-1 =
In—l,n—llnn

X

n,n-1

X

It follows that if the (2k,2k-1) term of L is zero, then the same is true for L.,.

-1
Moreover the (k,k-1) term of L', is —<<1

Ik—l,k—l kk
3.3. Algorithm for finding the inverse of a Itd matrix L of order n in which

I2k,2k—l =0 vk:
Given L = (I;)is ltd matrix of order n where 1, ,,, =0 Vk
write L, =(L,), %, =1}

I—Ilz(xll)
Fori=2(1)n,j=1()i
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N I S 8;) where §; =0,ifj <i
=1, if j=i

. Li—l 0€;_,
Write Li = .
ii-1€ia l;
X = Ii;l

- Ii,i—lxi—l,i—l

-1
1 I—i—l Oei—l
Lt = t
Xi,i—lei—l Xii

L Lt =1

Xiiia =

sLLt=l

3.3.1. lllustration:

2 0 0 0 O

0 1 0 0 O
1. L=|{0 -4 6 0 O

0 0 0 5 0

0 o 0 7 3
Step (i) i=1

L,=(2)= L," =(0.5)

Step (ii) i=2
. L, 0 2 0
Write L, = =
L, 1, 0 1
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Xo1 = =0
Ill|22
L* 0
Therefore L' =| *
0 1
Step (iii) i =3

L= % where e 0.)
= where e} = (0,
P28l 6 ?

Xg = |53 = 0.166666666

Xy = “l2 _ 666666666

22733

-1

L
Therefore L' :( ?

Step (iv) i=4

L S 08 h (0,0,)"
= wnere e, = (U,U,
* loet 5 ?

Write x,, =1,; =0.2

-1
_ 43
Xy3 —I i =0
33044
-1

-1 L3 Oe3
Therefore L, =
Oe; 0.2

Step (v) 1 =5

L, Oe, .
Ls=1|_, where e, =(0001)
7e, 3

Write X = I = 0.333333333

o€,
0.666666666€ 0.166666666]
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1
Xg, = —3% = —0.466666666

|55|44

-1

L oe
Therefore L;' :( ‘ )

0.5 0 0 0
0 1 0 0 0
Hence L'=L;'=|0  0.666666666 0.166666666 0 0
0 0 0 0.2 0
0 0 0 0.466666666 0.333333333

3.4. Counting Arithmetic Operations:

0.466666666e; 0.333333333

We now find the number of arithmetic operations for finding inverse of a

lower tridiagonal matrix L of order n in which I, , , =0 by the recursive method

of theorem (3.2).

Let S;be the number of operations required for computation of inverse of a

lower tridiagonal matrix of order i when inverse of the submatrix of order i —1 is

known. Then S:ZSi is the total number of operations required for the inverse of

i=1

a given matrix L of order n.

Let L, = (l,) and L;* = (I,})

fori=2(1)n
Sij=0ifj<i
=1 ifj=i
I (. SR 5ii)
L. oe,
Li - i-1 i-1
Ii,i—leit—l Iii
X oe
then L= ( o . 'lJ
Xii1€ig X
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where x; =I;*

In this computation we don’t consider the change of sign as an
arithmetical operation.

Since |, ,, =0 and X, ,._, =0 total number of computations must be

counted separately for both odd and even cases.

TABLE 3.4.1
Matrix Computation of No. of arithmetic Total number of
operations arithmetic operations
L;*,iis odd Xii 2 3
X;; 1
Lt X;i 1 1
Case (i) nis odd
Total number of operations, S=S, +S, +.....cc.cceevreinnn. +3S,
=1+(S,+S, +.ene. S, 1 )H(S;+Ss+ e, S,)

= 1+1(”_1}+3(”_1j=2n-1
2 2

Case (ii) nis even

Total number of operations
S=S5, +(S,+S, +....... S )H(S;+Sc +n, S,1)

= 1+1 (ﬂj 4 3[”;2] =2n-2
2 2

Comparison with a lower triangular matrix of order n in section 1.
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The arithmetic operations required for computation of inverse of lower

tridiagonal matrix of order n are counted and found to be n?

In case of a lower tridiagonal matrix in which (2k,2k-1) entries are zero
where our algorithm (3.3) is applied, this number reduces to
{ 2n-1, when n is odd,

2n-2, when n is even.

3.5. Result : If A is symmetric, positive definite and tridiagonal matrix of the type

A = (a;)where a,, , =0 then A= LL"where L is Itd and I,, ,, , =0. For such a

L, L1 is also of the same type.

a, 0 0 0 0 0
0 a,, a, O 0 0
0 a, aiz; 0 0 0
0 0 0 a a 0
Proof : Let A = BT
0 0 0 A, A 0
0 0 0 0 O a,,
l, 0
21 I22 O
and L = 0 = = 0
0 0 o 1 |

n,n-1 "nn

such that A = LL!
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1/2

2 —_— —_—
|11 =q;, = I11 =a;
I,l,,=0=1,,=0
2 2 _AL2
I, +1,," =a,, =, =a;
a
_ _ 9y
o5, =235, = 1y __l
22

Therefore (2 i-1, 2 i-1) element

1%2i02i-2 + 1 %2i2i1 = Qi1 5i1
%2211 = 8y 454 — | 22i12i-2

L 12ia = (@210 — | fai12i2)"""
(2i—-1, 2i —2)element.

|2i—1,2i—2 |2i—2,2i—2 =8y 422

_ W0

I2i71,2i72 I
2i-2,2i-2

(2i,2i —1) element.
Lyigia loigoia +152(0)=0
S ligi =0

(2i,2i) element.

L _ 1/2
I%2i2i = Qi = I2i,2i = (aZi,Zi)

1/2
Hence I2i,2i = a5 i

I2i,2i—1 =0

| Qi
2i41,2i

I2i,2i

_|2

1/2
2i+1,2i)

I2i+l,2i+l = (a2i+1,2i+l

_Al2
|11 =a,
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3.6 Single bordering for LL' decomposition of a symmetric, positive definite

and tridiagonal matrix A=(aj;) of order n, where a,, ,,., =0 Vk:

Proof: Let A A, .coveviiiee. A, be the leading principal minors of A.

A =(a,) and L, =(l,)such that

Al = |—1|—1T
|11 = alliz
oL, =(a¥?)
fori=2(I)n

Assume that A, =L, L'  where (2k,2k-1) entries in the Itd matrix L._, are zero.

G S 5;i)' 6y =0 ifj<i

= 1ifj=i
. Liy 0€;,;
wite L =| | (1)

Then L,L; = A if
Ai—l = Li—lLti—l

since a,;; =a;;,
Ii,i—1 Ii—l,i—l =84

1%ia+12 =a,
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a'i,i—l

= .= |
i-1,i-1
2 2
Iii = q _Ii,i—l
. a;;_
thatis I, = ——
i-1,i-1

2 \1/2
Iii = (aii _Ii,i—l)

These values |, ,,l; give L; by (1)

3.7. Algorithm:
Algorithm for finding LL! decomposition of a symmetric, positive definite and

tridiagonal matrix of order n in which (2k,2k-1) entries are zero V Kk,

Assume A=(a;) is symmetric, positive definite and tridiagonal matrix of

order n in which a,,,,, =0 Vk

Write A.'L = (311)1|11 = a'ﬂz

L= ()
fori=2(1)n, j=1(1)i
eit =(§il’5i2 ................ 5“) ;5”' =0, IfJ<|
=1,ifj=i
- a4 6
wmexxz[Al t : l}
ai,i—lei—l &;j
a.
I- _ — ii-1
H Ii—l,i—l

2 \1/2
Iii = (aii _Ii,i—l)

L = Liy t 08,
liia8is li

A=A =LL!
A=LL
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llustration:

15 0O 0 0 O

0 7 4 0 O
A=1]0 4 9 0 O

0 0 0 10 3

0 0 0 3 4
Stepl:i=1

let A =(15), |,=15"%=3.872983346
L, = (I,,) = (3.872983346)

Step2:i=2
_(A 0

Az_(o 7

|21:%:0

l,, = (ay, —12,)"'? = 2.645751311

L 0
Therefore L, =|
0 2.645751311

Step 3:i=3

A, = [AZ 43} where e2 = (0,1)!

4e;

I, = Tﬁ — 1511857892

22

|, = (ay, —13)"? = 2.591193878
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Oe
Therefore L, = 2 . 2
1.511857892e! 2.591193878
Step4:i=4
Oe
A = Ast ° | where e3 = (0,0,1)!
Oe, 10
s = e =0
|33
l,, =(a, —1%)"? =3.16227766
L L, Oe,
o6l 3.16227766
Step5:i=5
A, A3 h (0,0,0,1)t
= where e4 = (U,U,0,
3e; 4
1, = 3¢ —0.948683298
|44
s = (g —12,)"2 =1.760681686
L=
®10.948683298¢ 1760681686
L A= A =LL
A=LL!
Where
3.872983346 0 0 0 0
0 2.645751311 0 0 0
L=10 1.511857892 2.591193878 0 0
0 0 0 3.16227766 0
0 0 0 0.948683298 1.760681686
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3.8. Counting Arithmetic Operations:

We now find the number of arithmetic operations for finding LL!
decomposition of a symmetric, positive definite and tridiagonal matrix A of order

nin which a, ,,,= 0, V k by the recursive method of theorem [3.5] .

Let S, be the number of operations required for computation of LL!

decomposition of a tridiagonal matrix of order i when LL! decomposition of the

submatrix of order i=1 is known. Then S= Zsi is the total number of operations
i-1

required for the LL' decomposition of a given matrix A of order n. Since azk2«-1=0,

S can be computed separately for both even and odd cases.

Let A= (a,)and A= L Liwhere L, =(l,,)
fori=2(1)n

L. o€,
A =LL, where L, = [ ' IJ

And |, ,, =0

ai,i—1

Ii,i—l = |
i-1,i-1
|2

2 \1/2
i = (a; —154)"" where a; - ia>0

~ A =LL' foreachi
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In this computation we don’t consider the change of sign as an arithmetical

operation.
TABLE 3.8.1
Matrix Computation of No. of arithmetic | Total no. of arithmetic
operations operations
L, iis odd I, 1
’ ’ 4
Iii 3
L,iiseven | I, 3 3

Case (i) n is odd:
Total number of operations:
S=S, +(S,+S, +.eeen. S, 1 )H(S;+Ss+ e, S,)

~ 143 n-1 ‘4 n-1 :7n—5
2 2 2

Case (ii) nis even:

Total number of operations
S=S, +(S,+S, +........ S )H(S; +S; +en S,1)

_1+3 n 4 n-2 =7n—6
2 2 2
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3.8.1. Comparing with no. of computations of LL' decomposition of a

symmetric, positive definite and tridiagonal matrix of order n.

S.No Matrix No.of arithmetical
operations
1. Symmetric, positive definite 4n-3

and tridiagonal matrix of

order n

2. Symmetric, positive definite | nis even (7n-6) / 2
and tridiagonal matrix of
order n in which (2k,2k-1)

entries are zero. nis odd (7n-5) /2
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CHAPTER -4

Eigenvalues of Tridiagonal Matrices:

By definition a scalar Ais an eigenvalue of a square matrix A if there is a
nonzero vector x such that Ax=Ax and any such x is called eigenvector
corresponding to the eigenvalue A. Thus A is an eigenvalue of A if the system of
homogeneous equations represented by the matrix equation (A-Al)x = 0. This
system has a nontrivial solution if and only if the corresponding determinent
det(A-Al) = 0.

If A has order n the above equation turns to be a polynomial equation of
degree n and hence by the fundamental theorem of algebra has exactly n
solutions. It is clear that A and its transpose A! have the same eigenvalues and
Llis an eigervalue of Al whenever A is nonsingular. It is also true that if
A = SIBS then A and B have the same eigenvalues. That is, the eigenvalues

remain invariant under a similarity transformation.

There are several methods for finding the eigenvalues of a matrix. When A
is a real symmetric matrix Jacobi’s method Given’s method and Householder’'s
method can be used to find the eigenvalues. A very effective method for finding
the numerically largest eigenvalue and corresponding eigenvector is the power
method.

When we have a problem involving an unsymmetrical (assymmetric)
matrix we try to transform the unsymmetrical matrix into a symmetrical one
having the same eigenvalues. For tridiagonal matrices there is a very handy and
short way to make this transformation. Since a symmetric matrix has always real
eigenvalues (proof supplied in [4.2] ) this method can be useful to test if a
general tridiagonal matrix has all real eigenvalues or not. The contents of this

section are from [ 1 ].
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4.1. Result [1]:

Given a unsymmetrical tridiagonal matrix A

a1 bl
CZ a2
0 C,
A= 10 0
0 0

Where c,,b, ;, have same sign, assume that there exists a diagonal matrix D

o o T O

such that S =D AD.

0 O
0 0
b, 0
a, b,
0 O

S=D!AD = DS =AD

0 O
0 O
0 0
0 O
c, a

Since A is tridiagonal S is tridiagonal

Il S1
S1 IZ
0 S,
let S=
0 0
DS = AD
d, O
0 d, 0
=
0 O

0 0

0 0

s; O
Il Sl
Sl I2
0 s,
0 O

0 d,
0 0
0 0
and D=
Sn—1 In 0
0 O 0
s, O 0
I, s, 0
O S'n—l In
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a b 0 0 .. 0)d 0 0 .. 0
c,a, b, 0 .. 0 {0 d, 0 .. O
0 ¢ a by .. O R
0O 0 O c, a,)0 0 0 d,
dl, ds, 0 0 .. 0
d,l, d,l, d,s, O
0 d,s, d,l;  dss, 0
0 0 ds., dl
ad, bd, 0 0
c,d, a,d, b,d, 0
0 c,d, a,d, b,d,
0 0 cd,, a.d,
dlll = a1d1 dlsl = b1dz
d251 = C2dl dzlz = azdz d252 b2d3
0 d;s, =c.d, d,l; =a,d, d,s;, =b,d,
dn 1Sn 2 Cn 1dn 2 dn—lln—l an—ldn—l’ dn lSn—l bn 1dn
dnsn 1 Cndn—l dnln = a'nln
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let d, =1=1, =4a,,and s, =bd,, d,s, =c,
L=a,,l;=a, e |

fori=1(1)n-1

Case(i) b, =0=s,=0=¢c,,, =0

Case (ii) b, #0=c,,, # 0 because

i+1

4,=0=d,,5,=0=s,=0=Dbd

i+1 i+l

=0=b, =0 contradiction.

Let b, #0,c;

' Vi+l

#0 and %>O

d;s; =bd;

i+l

dH—l _Ci+d i

d, bd

i+l

di+1 Ci d

i+1

Z_Cil 2
__+di

i+1 b

=~ Sis0andd, = | 4
b.

let b, #0,c,

Y Vil

#0 and Ct‘)—+1<0

d;s, =bd

i+

di+15i =G

i+1

d,

C c,,
d, =-tdi= it b L >0 contradiction.

i+1 b

Therefore the diagonal [d1,d2,ds,........... dn] can be obtained by the following

iterative “square root” formula.

C_3 C

d,=1=d,=|—=d, =>d, =
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Condition for symmetrical tridiagonal transformation to have real

eigenvalues:
This process can be applied if the square root argument is positive.

bc—k >0,k = 2(1)n

k-1

The above conditions are sufficient to transform the unsymmetrical
tridiagonal matrix A into a symmetrical tridiagonal matrix S. The similarity
transform doesn’t alter the eigenvalues. Thus the matrices S and A have the

same eigenvalues. Further the eigenvalues of S are real in view of the following.
4.2. Theorem[2]: The eigenvalues of a real symmetric matrix are real.

Butterfly test for real eigenvalues of tridiagonal matrix [ 1 ]:
As is mentioned above If each element couple of a tridiagonal matrix Ck,bk-1 (this
couple, like a butterfly, is put in evidence in the figure) have the same sign, then

the eigenvalues are real.

a b O 0
c, a b, 0
O 3 a3 b3

c
0 0 ¢ a
We can say as well that the matrix can be converted in symmetrical form

by a similarity transform, ie S=D-!AD, where S is a symmetrical tridiagonal

matrix.
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lllustration: Consider the following 8 x 8 tridiagonal matrix,

5 1 O 0 0 0 0 0
4 6 4 0 0 0 0 0
0 1 -7 8 0 0 0 0
A= 0 o 2 -1 -4 0 0 O
0 0 0 -16 -5 5 0 O
0 0 0 0 5 8 18 0
0 0 0 0 0 2 2 27
0 0 0 0 0 O 3 -1

Test:4x1>0
1x4>0
2x8>0
(-16) x (-4) >0
5x5>0
2x18>0
3x27>0

The butterfly test is positive. So the matrix can be converted into

symmetric one by similar transform. With the iterative formula, we find the
elements of diagonal matrix.

d,=1=d, :\/%.1:2:>d3 :\/%.2:1 ...............

D =diag(1,2,1,1/2,1,1,1/3,1/9 )
Dl=diag( 1,%,1,2,1,1,3,9)
Performing the similarity transform, S = D'AD

We get the symmetrical tridiagonal matrix
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5 2 0 0 0 0 0 ©

2 6 2 0 0 0 0 0

0 2 -7 4 0 0 0 0
o O 4 -1 -8 0 0 0
>= 1o O 0 -8 -5 5 0 0
0 o 0 0 5 8 6 0

0 O 0 0 0 6 2 9

0 o 0 0 0 0 9 -1

Breaking down method [1]:
When the tridiagonal matrix has one or more zero elements in the
subdiagonal the above process cannot be applied. In this case the problem can

be simplified breaking the given matrix into sub-matrices by partitioning.

lllustration:
5 2 0 0O 0 0 0 O
2 6 2 0O 0 0 0 O
0 4 -7 4 0 0 0 O
0 0 1 -1 0 0 0 O
0 0 0 3-5 5 00
0 0 0 0O 1 8 3 0
0 0 0 0O 0 1 2 5
0 0 0 0 0 0 9 -1
5 2 0
2 6 2 0
0 4 — 4
0 0o 1 -1 0
3 (-5 5 0 0
1 8 3 0
0 1 2 5
0 0 9 -1

56



5 2 -5 5 0

2 0 8 3
B = C=

0 - 4 0 1 2

0 0 -1 0 0 9

For each of B,C we can now apply the process of similarity transform for

finding the symmetrical form. Then, we find the eigenvalues of B,C separately.

The union of these two sets of eigenvalues gives all the eigenvalues of the

original matrix.

We consider symmetric, positive definite and tridiagonal matrix A=(aij) in

which azk,2x-1=0.

Since matrix A is symmetric tridiagonal, breaking down method can be

applied to find eigenvalues.

lllustration:
15 0 0 0 0
0 7 4 0 O
A= 10 4 9 0 O
0 0 0 10 3
0 0O 0 3 4

Submatrices are

(7 4) [10 3j
S1=(15), S2= , S3=
4 9 3 4

Eigervalue of S1is A1 =15

Eigenvalues of Sz are A2 = 12.12310563
Eigenvalues of Sz are A4 = 11.24264069

57

A3 = 3.876894374

As = 2.757359313



Therefore eigenvalues of A are

M 15

A2 12.12310563
A3 11.24264069
\a 3.87689374

A5

2.757359313
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SECTION -5
QR Algorithm for Tridiagonal Matrices:

Definition: The matrix norm, ||A|| where A is a matrix of order n, is a non-
negative number which satisfies the properties:
0] ||A||>0 if A0 and |[O|]| =0
(i) [|cAl|= |c| ||A]] for an arbitrary complex number c
(i) [IA+BI[ < [IAll + [IBI]
(iv)  [IABI[ < [IAIl 1B
Definition: (Frobeneous) Euclidean norm: ||A|| = (Zn:| a; )"
ij=1
QR Decomposition :
5.1 Theorem [ 2] : If A is a matrix of order n there exits an orthogonal matrix Q
and an upper triangular matrix R such that A = QR
Proof : step 1:

For a matrix A = (a;),let x, = (ay, a8, .....a,)"

and yi=(|[ x[|]2 0,0,...... 0)t, then there is a Householder matrix P1 such that

Pixi=y1 and
1 1
1%, 1l a7 ay)
1 1
0 a; .. ay
P1A =
1 1
0 ay . Ay
Step 2: Let x,= (0,85 ,.cccom.... a®'and vy, =@, ],.0...0)" then as above

there is a householder matrix P2 such that P2x, = y,and
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PoP1A =

1% 11,
0

0

0

® @)
8 a3

1,1, a
2

0 ald

2

0 al?

@
a1n
(2)
a2n

(2)
a3n

(2)
Ann

If we continue this procedure, we will have Householder matrices,

matrix.

, Pn-1 such that

Since all Pr’'s are symmetric and orthogonal,
Pri=P=P;
Let Q = Pn-1Pn-2

Note: Q is orthogonal but not symmetric.

=R

iS an upper triangular

P2P1 Then QA =R Therefore A=QR

5.1. QR Algorithm[ 5 ]: Method of finding unitary matrix Q of order n and upper

traingular matrix of order n for a matrix A = (a;) of order n.

Let ak,gx, and r« be the ki column of A,Q,R respectively.

Step 1:

For k = 1 choose r,=||a, ||, = (a7 + a7 +

-1
Q, =nhq
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Step 2:

for k = 2(1)n
compute N =i, for i=1()k -1
k-1
M =|| ay _zrikqi I
i=1
L k-1
Ox = N (ak _Zriin)
i=1
[llustration:
1 2 0
A=|2 3 4
0 4 5
Step 1:

K=1,r, = (a +a})"? = 2.236067977
0, = ,;'a, = (0.447213595,0.894427191,0)"

Step 2: K=2,

r, = q'a, = 3.577708764

r, =l a, — 1,0, ||= 4.024922359

d, =, (a, —1,,9,) = (0.099380799,-0.049690399,0.99380799)"

Step 3:K=3,
I, = 0,8, = 3.577708764
I = 0,3, = 4.77062399
Iy =l 83 — 150, — 0, ||= 2.333333355
Os = Faz (8 = 130, — T250,)

= (-0.8889036,0.444451799,0.110963896)"
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0.447213595  0.099380799 —0.8889036
Q =10.894427191 -0.049690399 0.444451799
0 0.99380799 0.110963896

2.236067977  3.577708763 3.577708764

R= 0 4.024922359 4.77062399
0 0 2.333333355
1 2 0
QR=[2 3 4|=A
0 4 5

We examine how the QR algorithm gets simplified for TD matrices.

5.2. QR factorization for tridiagonal matrices:

Let A=(a;) be tridiagonal matrix of order n.

So, aj = 0 for |i-j| >1
and A = QR where Q is unitary and R is upper traingular matrix.

let Q = (q;) and R =(r;) where r; =0 fori-j>1

from this of section 5

q; =0 fori—j>2
We have a; =0 fori-j>2

So

j-1
a; =15 (@; =2 ra)
i=1
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0 P11 P12 P ja
0 P2 P2 P2,j
0 Pa
=r; Tt I I O . M

aij Y pj,]—l
Ajia, 0

0

0 0 0 0

where p, =r;'a,, for i =1)n

Py =T (a; — 1P ), for j=2()n

for k > j+2, the k" term in each of the column is zero.
Hence the k™ term of g, is zero.

Thisistrue Vk >j+2and vV j>1

.. Q is upper Hessenberg.

We now present our results on QR factorization of a matrix in SLTD.
5.3. Result:

If A is symmetric, positive definite and tridiagonal matrix of order n in which
az2k-1=0 V k then the matrix Q in QR factorization is also of the same type as A

and in the upper triangular matrix R, rzi-1,2i =0 and rj=0 for i-j > 1 and j —i >2.

Proof: k=1
=l [Fay
q, =r;'a, = (p,0 0....0)" where

p, =rya, for i=1n
Py = 1j; (@ = 1 Py o) for j=2(D)n

k=2
I, =0;a, = (py0 O........ 0)0 a,, a, O.......... 0)' =0
Iy :” a, —1,Q, ”:” a, ||

/
= (a222 + a§2)1 ?
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=) 4
g, =ry (8.2 - rlqu) =Iya,

=( 0 p,,ps, O 0)t

for i =1(1)n/2, when nis even
=1(1) (n-1/2), when nis odd

k=2i
I 2i =qia2i =(py0 0...0)(0 0...... 8y 2118511210 Orevs 0)' =0

forj=2(1) 2i-1

Assume q; = (00......... PjPj--0)if j is even

= (00......... Py Py----0)if j is odd

= (00.......0p;; P;,1,;0....0)(0 0....8, 5 , 8.1 5 ----0)'
= P (0)+ Py, (0) + (0)ay 5 + (0)ay,,, =0

(ii) j is odd

Mo =0djay

= (00........ Pi1;P;0...0)(00....a, 5, 8y,; 5--.0)'
= P (0)+ Py (0) + (0)ay 5 + (0)ay,yz
=0

- 1, =0 for j=1(1)2i-1

2i1

Fi 2 =|| ay; _er,Ziqj Il
j=1

= llay |

64



)
Ui = 1219y

= (00....Py 5i» Paiszi 0......0)"
K=2i+1]
r1,2i+1 = q;azm
=(py 0 0...0) (0 0...8, 1 800 =0

forj=2(1) 2i-1

j is even,
M2 = qtjaznl
= (0 0....pj;, Pj.yj 0...0)(00..85 5,11 gy pisgseeenn-0)'

=Py 0) + Piisj 0)+ (O)azi,2i+1 + (O)a2i+1,2i+1 =0

j is odd

2 = 08
=(0 0...pj_yj, P 0....0)(00...8, 5,1, 8p,1 pis11------0)"
=P, (0) + p;(0) +(0)ay 5.y +(0)@51.1 510 =0

Sl =0for j=2(1)2i-1

—_nt..
Nizisa =020 Ay

= Paigi@oizia T Poiviai 8zisioia # 0

2i

Foivazie =l Qgisg — er,zm q;
1
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= |l ay., — Lo o | = 0

)
Ugivs = D12 (@oi — Foigin Uai)

QR=A
p, 0 0 .. 0
0 Pp Py
where A = 0 Ps; Pz - 0
0 O O pn,nfl pnn
n, 0 O 00 0
0 r, I, 00 0
0 0 r33 00 0
and R=1|0 0 0 r,t', 0
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